関数 $y = \frac{2x + 1}{x^2 - x + 1}$ を微分せよ。解析学微分関数の微分商の微分公式2025/6/281. 問題の内容関数 y=2x+1x2−x+1y = \frac{2x + 1}{x^2 - x + 1}y=x2−x+12x+1 を微分せよ。2. 解き方の手順商の微分公式を用います。y=uvy = \frac{u}{v}y=vu のとき、dydx=u′v−uv′v2\frac{dy}{dx} = \frac{u'v - uv'}{v^2}dxdy=v2u′v−uv′ です。ここで、u=2x+1u = 2x + 1u=2x+1、v=x2−x+1v = x^2 - x + 1v=x2−x+1 とすると、u′=ddx(2x+1)=2u' = \frac{d}{dx}(2x + 1) = 2u′=dxd(2x+1)=2v′=ddx(x2−x+1)=2x−1v' = \frac{d}{dx}(x^2 - x + 1) = 2x - 1v′=dxd(x2−x+1)=2x−1よって、dydx=2(x2−x+1)−(2x+1)(2x−1)(x2−x+1)2\frac{dy}{dx} = \frac{2(x^2 - x + 1) - (2x + 1)(2x - 1)}{(x^2 - x + 1)^2}dxdy=(x2−x+1)22(x2−x+1)−(2x+1)(2x−1)分子を展開して整理します。dydx=2x2−2x+2−(4x2−2x+2x−1)(x2−x+1)2\frac{dy}{dx} = \frac{2x^2 - 2x + 2 - (4x^2 - 2x + 2x - 1)}{(x^2 - x + 1)^2}dxdy=(x2−x+1)22x2−2x+2−(4x2−2x+2x−1)dydx=2x2−2x+2−4x2+1(x2−x+1)2\frac{dy}{dx} = \frac{2x^2 - 2x + 2 - 4x^2 + 1}{(x^2 - x + 1)^2}dxdy=(x2−x+1)22x2−2x+2−4x2+1dydx=−2x2−2x+3(x2−x+1)2\frac{dy}{dx} = \frac{-2x^2 - 2x + 3}{(x^2 - x + 1)^2}dxdy=(x2−x+1)2−2x2−2x+33. 最終的な答えdydx=−2x2−2x+3(x2−x+1)2\frac{dy}{dx} = \frac{-2x^2 - 2x + 3}{(x^2 - x + 1)^2}dxdy=(x2−x+1)2−2x2−2x+3