定積分 $\int_{0}^{\frac{3\pi}{4}} \{(1+x)\sin x + (1-x)\cos x\} dx$ を計算する。解析学定積分部分積分三角関数2025/6/291. 問題の内容定積分 ∫03π4{(1+x)sinx+(1−x)cosx}dx\int_{0}^{\frac{3\pi}{4}} \{(1+x)\sin x + (1-x)\cos x\} dx∫043π{(1+x)sinx+(1−x)cosx}dx を計算する。2. 解き方の手順まず、積分の中身を展開します。(1+x)sinx+(1−x)cosx=sinx+xsinx+cosx−xcosx(1+x)\sin x + (1-x)\cos x = \sin x + x\sin x + \cos x - x\cos x(1+x)sinx+(1−x)cosx=sinx+xsinx+cosx−xcosx積分を分解します。∫03π4{(1+x)sinx+(1−x)cosx}dx=∫03π4(sinx+cosx+xsinx−xcosx)dx\int_{0}^{\frac{3\pi}{4}} \{(1+x)\sin x + (1-x)\cos x\} dx = \int_{0}^{\frac{3\pi}{4}} (\sin x + \cos x + x\sin x - x\cos x) dx∫043π{(1+x)sinx+(1−x)cosx}dx=∫043π(sinx+cosx+xsinx−xcosx)dx=∫03π4sinxdx+∫03π4cosxdx+∫03π4xsinxdx−∫03π4xcosxdx= \int_{0}^{\frac{3\pi}{4}} \sin x dx + \int_{0}^{\frac{3\pi}{4}} \cos x dx + \int_{0}^{\frac{3\pi}{4}} x\sin x dx - \int_{0}^{\frac{3\pi}{4}} x\cos x dx=∫043πsinxdx+∫043πcosxdx+∫043πxsinxdx−∫043πxcosxdx部分積分を使って、∫xsinxdx\int x\sin x dx∫xsinxdx と ∫xcosxdx\int x\cos x dx∫xcosxdx を計算します。∫xsinxdx=−xcosx+∫cosxdx=−xcosx+sinx+C1\int x\sin x dx = -x\cos x + \int \cos x dx = -x\cos x + \sin x + C_1∫xsinxdx=−xcosx+∫cosxdx=−xcosx+sinx+C1∫xcosxdx=xsinx−∫sinxdx=xsinx+cosx+C2\int x\cos x dx = x\sin x - \int \sin x dx = x\sin x + \cos x + C_2∫xcosxdx=xsinx−∫sinxdx=xsinx+cosx+C2したがって、∫03π4xsinxdx=[−xcosx+sinx]03π4=−3π4cos(3π4)+sin(3π4)−(0)=−3π4(−22)+22=3π28+22\int_{0}^{\frac{3\pi}{4}} x\sin x dx = [-x\cos x + \sin x]_{0}^{\frac{3\pi}{4}} = -\frac{3\pi}{4}\cos(\frac{3\pi}{4}) + \sin(\frac{3\pi}{4}) - (0) = -\frac{3\pi}{4}(-\frac{\sqrt{2}}{2}) + \frac{\sqrt{2}}{2} = \frac{3\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2}∫043πxsinxdx=[−xcosx+sinx]043π=−43πcos(43π)+sin(43π)−(0)=−43π(−22)+22=83π2+22∫03π4xcosxdx=[xsinx+cosx]03π4=3π4sin(3π4)+cos(3π4)−(0+1)=3π4(22)−22−1=3π28−22−1\int_{0}^{\frac{3\pi}{4}} x\cos x dx = [x\sin x + \cos x]_{0}^{\frac{3\pi}{4}} = \frac{3\pi}{4}\sin(\frac{3\pi}{4}) + \cos(\frac{3\pi}{4}) - (0 + 1) = \frac{3\pi}{4}(\frac{\sqrt{2}}{2}) - \frac{\sqrt{2}}{2} - 1 = \frac{3\pi\sqrt{2}}{8} - \frac{\sqrt{2}}{2} - 1∫043πxcosxdx=[xsinx+cosx]043π=43πsin(43π)+cos(43π)−(0+1)=43π(22)−22−1=83π2−22−1∫03π4sinxdx=[−cosx]03π4=−cos(3π4)+cos(0)=−(−22)+1=22+1\int_{0}^{\frac{3\pi}{4}} \sin x dx = [-\cos x]_{0}^{\frac{3\pi}{4}} = -\cos(\frac{3\pi}{4}) + \cos(0) = -(-\frac{\sqrt{2}}{2}) + 1 = \frac{\sqrt{2}}{2} + 1∫043πsinxdx=[−cosx]043π=−cos(43π)+cos(0)=−(−22)+1=22+1∫03π4cosxdx=[sinx]03π4=sin(3π4)−sin(0)=22−0=22\int_{0}^{\frac{3\pi}{4}} \cos x dx = [\sin x]_{0}^{\frac{3\pi}{4}} = \sin(\frac{3\pi}{4}) - \sin(0) = \frac{\sqrt{2}}{2} - 0 = \frac{\sqrt{2}}{2}∫043πcosxdx=[sinx]043π=sin(43π)−sin(0)=22−0=22したがって、∫03π4(sinx+cosx+xsinx−xcosx)dx=(22+1)+(22)+(3π28+22)−(3π28−22−1)=22+1+22+3π28+22−3π28+22+1=2+22\int_{0}^{\frac{3\pi}{4}} (\sin x + \cos x + x\sin x - x\cos x) dx = (\frac{\sqrt{2}}{2} + 1) + (\frac{\sqrt{2}}{2}) + (\frac{3\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2}) - (\frac{3\pi\sqrt{2}}{8} - \frac{\sqrt{2}}{2} - 1) = \frac{\sqrt{2}}{2} + 1 + \frac{\sqrt{2}}{2} + \frac{3\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2} - \frac{3\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2} + 1 = 2 + 2\sqrt{2}∫043π(sinx+cosx+xsinx−xcosx)dx=(22+1)+(22)+(83π2+22)−(83π2−22−1)=22+1+22+83π2+22−83π2+22+1=2+223. 最終的な答え22+22\sqrt{2} + 222+2