定積分 $\int_{0}^{\frac{3}{4}\pi} \{(1+x)\sin x + (1-x)\cos x\} dx$ を計算します。解析学定積分部分積分三角関数2025/6/29## 問題9 の解答1. 問題の内容定積分 ∫034π{(1+x)sinx+(1−x)cosx}dx\int_{0}^{\frac{3}{4}\pi} \{(1+x)\sin x + (1-x)\cos x\} dx∫043π{(1+x)sinx+(1−x)cosx}dx を計算します。2. 解き方の手順まず、積分を2つに分けます。∫034π(1+x)sinxdx+∫034π(1−x)cosxdx\int_{0}^{\frac{3}{4}\pi} (1+x)\sin x dx + \int_{0}^{\frac{3}{4}\pi} (1-x)\cos x dx∫043π(1+x)sinxdx+∫043π(1−x)cosxdxそれぞれの積分を部分積分で計算します。一つ目の積分 ∫034π(1+x)sinxdx\int_{0}^{\frac{3}{4}\pi} (1+x)\sin x dx∫043π(1+x)sinxdx について、u=1+xu = 1+xu=1+x, dv=sinxdxdv = \sin x dxdv=sinxdx とすると、du=dxdu = dxdu=dx, v=−cosxv = -\cos xv=−cosx となります。部分積分の公式 ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu より、∫034π(1+x)sinxdx=[−(1+x)cosx]034π−∫034π(−cosx)dx\int_{0}^{\frac{3}{4}\pi} (1+x)\sin x dx = [-(1+x)\cos x]_{0}^{\frac{3}{4}\pi} - \int_{0}^{\frac{3}{4}\pi} (-\cos x) dx∫043π(1+x)sinxdx=[−(1+x)cosx]043π−∫043π(−cosx)dx=[−(1+x)cosx]034π+[sinx]034π= [-(1+x)\cos x]_{0}^{\frac{3}{4}\pi} + [\sin x]_{0}^{\frac{3}{4}\pi}=[−(1+x)cosx]043π+[sinx]043π=−(1+34π)cos(34π)+(1+0)cos(0)+sin(34π)−sin(0)= -(1+\frac{3}{4}\pi)\cos(\frac{3}{4}\pi) + (1+0)\cos(0) + \sin(\frac{3}{4}\pi) - \sin(0)=−(1+43π)cos(43π)+(1+0)cos(0)+sin(43π)−sin(0)=−(1+34π)(−22)+1+22−0= -(1+\frac{3}{4}\pi)(-\frac{\sqrt{2}}{2}) + 1 + \frac{\sqrt{2}}{2} - 0=−(1+43π)(−22)+1+22−0=22+3π28+1+22= \frac{\sqrt{2}}{2} + \frac{3\pi\sqrt{2}}{8} + 1 + \frac{\sqrt{2}}{2}=22+83π2+1+22=2+3π28+1= \sqrt{2} + \frac{3\pi\sqrt{2}}{8} + 1=2+83π2+1次に、二つ目の積分 ∫034π(1−x)cosxdx\int_{0}^{\frac{3}{4}\pi} (1-x)\cos x dx∫043π(1−x)cosxdx について、u=1−xu = 1-xu=1−x, dv=cosxdxdv = \cos x dxdv=cosxdx とすると、du=−dxdu = -dxdu=−dx, v=sinxv = \sin xv=sinx となります。部分積分の公式 ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu より、∫034π(1−x)cosxdx=[(1−x)sinx]034π−∫034π(−sinx)dx\int_{0}^{\frac{3}{4}\pi} (1-x)\cos x dx = [(1-x)\sin x]_{0}^{\frac{3}{4}\pi} - \int_{0}^{\frac{3}{4}\pi} (-\sin x) dx∫043π(1−x)cosxdx=[(1−x)sinx]043π−∫043π(−sinx)dx=[(1−x)sinx]034π+∫034πsinxdx= [(1-x)\sin x]_{0}^{\frac{3}{4}\pi} + \int_{0}^{\frac{3}{4}\pi} \sin x dx=[(1−x)sinx]043π+∫043πsinxdx=[(1−x)sinx]034π+[−cosx]034π= [(1-x)\sin x]_{0}^{\frac{3}{4}\pi} + [-\cos x]_{0}^{\frac{3}{4}\pi}=[(1−x)sinx]043π+[−cosx]043π=(1−34π)sin(34π)−(1−0)sin(0)−cos(34π)+cos(0)= (1-\frac{3}{4}\pi)\sin(\frac{3}{4}\pi) - (1-0)\sin(0) - \cos(\frac{3}{4}\pi) + \cos(0)=(1−43π)sin(43π)−(1−0)sin(0)−cos(43π)+cos(0)=(1−34π)22−0−(−22)+1= (1-\frac{3}{4}\pi)\frac{\sqrt{2}}{2} - 0 - (-\frac{\sqrt{2}}{2}) + 1=(1−43π)22−0−(−22)+1=22−3π28+22+1= \frac{\sqrt{2}}{2} - \frac{3\pi\sqrt{2}}{8} + \frac{\sqrt{2}}{2} + 1=22−83π2+22+1=2−3π28+1= \sqrt{2} - \frac{3\pi\sqrt{2}}{8} + 1=2−83π2+1したがって、元の積分は、(2+3π28+1)+(2−3π28+1)=22+2(\sqrt{2} + \frac{3\pi\sqrt{2}}{8} + 1) + (\sqrt{2} - \frac{3\pi\sqrt{2}}{8} + 1) = 2\sqrt{2} + 2(2+83π2+1)+(2−83π2+1)=22+23. 最終的な答え22+22\sqrt{2} + 222+2