次の定積分を計算します。 $\int_{0}^{1} \left( \frac{x+1}{x^2+1} \right)^2 dx$解析学定積分積分置換積分arctan部分分数分解2025/6/291. 問題の内容次の定積分を計算します。∫01(x+1x2+1)2dx\int_{0}^{1} \left( \frac{x+1}{x^2+1} \right)^2 dx∫01(x2+1x+1)2dx2. 解き方の手順まず積分の中身を展開します。(x+1x2+1)2=(x+1)2(x2+1)2=x2+2x+1x4+2x2+1\left( \frac{x+1}{x^2+1} \right)^2 = \frac{(x+1)^2}{(x^2+1)^2} = \frac{x^2+2x+1}{x^4+2x^2+1}(x2+1x+1)2=(x2+1)2(x+1)2=x4+2x2+1x2+2x+1次に、積分を以下のように分けます。∫01x2+2x+1x4+2x2+1dx=∫01x2+1x4+2x2+1dx+∫012xx4+2x2+1dx\int_{0}^{1} \frac{x^2+2x+1}{x^4+2x^2+1} dx = \int_{0}^{1} \frac{x^2+1}{x^4+2x^2+1} dx + \int_{0}^{1} \frac{2x}{x^4+2x^2+1} dx∫01x4+2x2+1x2+2x+1dx=∫01x4+2x2+1x2+1dx+∫01x4+2x2+12xdxここで、x4+2x2+1=(x2+1)2x^4+2x^2+1 = (x^2+1)^2x4+2x2+1=(x2+1)2 なので、最初の積分は∫01x2+1(x2+1)2dx=∫011x2+1dx\int_{0}^{1} \frac{x^2+1}{(x^2+1)^2} dx = \int_{0}^{1} \frac{1}{x^2+1} dx∫01(x2+1)2x2+1dx=∫01x2+11dxこれは arctan(x)\arctan(x)arctan(x) の積分なので、∫011x2+1dx=[arctan(x)]01=arctan(1)−arctan(0)=π4−0=π4\int_{0}^{1} \frac{1}{x^2+1} dx = [\arctan(x)]_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}∫01x2+11dx=[arctan(x)]01=arctan(1)−arctan(0)=4π−0=4π2番目の積分は∫012x(x2+1)2dx\int_{0}^{1} \frac{2x}{(x^2+1)^2} dx∫01(x2+1)22xdxu=x2+1u = x^2+1u=x2+1 と置換すると、du=2xdxdu = 2x dxdu=2xdx となります。また、x=0x=0x=0 のとき u=1u=1u=1、x=1x=1x=1 のとき u=2u=2u=2 なので、∫012x(x2+1)2dx=∫121u2du=∫12u−2du=[−u−1]12=[−1u]12=−12−(−1)=1−12=12\int_{0}^{1} \frac{2x}{(x^2+1)^2} dx = \int_{1}^{2} \frac{1}{u^2} du = \int_{1}^{2} u^{-2} du = [-u^{-1}]_1^2 = [-\frac{1}{u}]_1^2 = -\frac{1}{2} - (-1) = 1 - \frac{1}{2} = \frac{1}{2}∫01(x2+1)22xdx=∫12u21du=∫12u−2du=[−u−1]12=[−u1]12=−21−(−1)=1−21=21したがって、積分全体は∫01(x+1x2+1)2dx=π4+12\int_{0}^{1} \left( \frac{x+1}{x^2+1} \right)^2 dx = \frac{\pi}{4} + \frac{1}{2}∫01(x2+1x+1)2dx=4π+213. 最終的な答えπ4+12\frac{\pi}{4} + \frac{1}{2}4π+21