画像に写っている2つの問題をそれぞれ解きます。 問題1:$\sum_{k=1}^{n-1} (2^k - k^2)$ 問題2:$\sum_{k=1}^{n} (k^3 - k)$代数学級数シグマ等比数列の和公式2025/6/291. 問題の内容画像に写っている2つの問題をそれぞれ解きます。問題1:∑k=1n−1(2k−k2)\sum_{k=1}^{n-1} (2^k - k^2)∑k=1n−1(2k−k2)問題2:∑k=1n(k3−k)\sum_{k=1}^{n} (k^3 - k)∑k=1n(k3−k)2. 解き方の手順問題1:∑k=1n−1(2k−k2)\sum_{k=1}^{n-1} (2^k - k^2)∑k=1n−1(2k−k2)まず、シグマを分配します。∑k=1n−12k−∑k=1n−1k2\sum_{k=1}^{n-1} 2^k - \sum_{k=1}^{n-1} k^2∑k=1n−12k−∑k=1n−1k2等比数列の和の公式∑k=1nark−1=a1−rn1−r\sum_{k=1}^{n} ar^{k-1} = a\frac{1-r^n}{1-r}∑k=1nark−1=a1−r1−rnを用いると、∑k=1n−12k=∑k=1n−12⋅2k−1=2⋅1−2n−11−2=2(2n−1−1)=2n−2\sum_{k=1}^{n-1} 2^k = \sum_{k=1}^{n-1} 2 \cdot 2^{k-1} = 2 \cdot \frac{1-2^{n-1}}{1-2} = 2(2^{n-1} - 1) = 2^n - 2∑k=1n−12k=∑k=1n−12⋅2k−1=2⋅1−21−2n−1=2(2n−1−1)=2n−2∑k=1n−1k2=(n−1)n(2n−2+1)6=(n−1)n(2n−1)6=2n3−3n2+n6\sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2n-2+1)}{6} = \frac{(n-1)n(2n-1)}{6} = \frac{2n^3 - 3n^2 + n}{6}∑k=1n−1k2=6(n−1)n(2n−2+1)=6(n−1)n(2n−1)=62n3−3n2+nしたがって、∑k=1n−1(2k−k2)=2n−2−2n3−3n2+n6=2n−2−n(n−1)(2n−1)6\sum_{k=1}^{n-1} (2^k - k^2) = 2^n - 2 - \frac{2n^3 - 3n^2 + n}{6} = 2^n - 2 - \frac{n(n-1)(2n-1)}{6}∑k=1n−1(2k−k2)=2n−2−62n3−3n2+n=2n−2−6n(n−1)(2n−1)問題2:∑k=1n(k3−k)\sum_{k=1}^{n} (k^3 - k)∑k=1n(k3−k)まず、シグマを分配します。∑k=1nk3−∑k=1nk\sum_{k=1}^{n} k^3 - \sum_{k=1}^{n} k∑k=1nk3−∑k=1nk∑k=1nk3=(n(n+1)2)2=n2(n+1)24=n2(n2+2n+1)4=n4+2n3+n24\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4} = \frac{n^2(n^2 + 2n + 1)}{4} = \frac{n^4 + 2n^3 + n^2}{4}∑k=1nk3=(2n(n+1))2=4n2(n+1)2=4n2(n2+2n+1)=4n4+2n3+n2∑k=1nk=n(n+1)2=n2+n2\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \frac{n^2 + n}{2}∑k=1nk=2n(n+1)=2n2+nしたがって、∑k=1n(k3−k)=n4+2n3+n24−n2+n2=n4+2n3+n2−2(n2+n)4=n4+2n3−n2−2n4=n(n+1)(n2+n−2)4=n(n+1)(n+2)(n−1)4=(n−1)n(n+1)(n+2)4\sum_{k=1}^{n} (k^3 - k) = \frac{n^4 + 2n^3 + n^2}{4} - \frac{n^2 + n}{2} = \frac{n^4 + 2n^3 + n^2 - 2(n^2 + n)}{4} = \frac{n^4 + 2n^3 - n^2 - 2n}{4} = \frac{n(n+1)(n^2 + n - 2)}{4} = \frac{n(n+1)(n+2)(n-1)}{4} = \frac{(n-1)n(n+1)(n+2)}{4}∑k=1n(k3−k)=4n4+2n3+n2−2n2+n=4n4+2n3+n2−2(n2+n)=4n4+2n3−n2−2n=4n(n+1)(n2+n−2)=4n(n+1)(n+2)(n−1)=4(n−1)n(n+1)(n+2)3. 最終的な答え問題1:2n−2−n(n−1)(2n−1)62^n - 2 - \frac{n(n-1)(2n-1)}{6}2n−2−6n(n−1)(2n−1)問題2:(n−1)n(n+1)(n+2)4\frac{(n-1)n(n+1)(n+2)}{4}4(n−1)n(n+1)(n+2)