問題は、$\sum_{k=1}^{n}(k-1)^2$ を計算することです。代数学級数シグマ記号展開公式2025/6/291. 問題の内容問題は、∑k=1n(k−1)2\sum_{k=1}^{n}(k-1)^2∑k=1n(k−1)2 を計算することです。2. 解き方の手順まず、∑k=1n(k−1)2\sum_{k=1}^{n}(k-1)^2∑k=1n(k−1)2 を展開します。∑k=1n(k−1)2=∑k=1n(k2−2k+1)=∑k=1nk2−2∑k=1nk+∑k=1n1\sum_{k=1}^{n}(k-1)^2 = \sum_{k=1}^{n}(k^2 - 2k + 1) = \sum_{k=1}^{n} k^2 - 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(k−1)2=∑k=1n(k2−2k+1)=∑k=1nk2−2∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nしたがって、∑k=1n(k−1)2=n(n+1)(2n+1)6−2n(n+1)2+n\sum_{k=1}^{n}(k-1)^2 = \frac{n(n+1)(2n+1)}{6} - 2\frac{n(n+1)}{2} + n∑k=1n(k−1)2=6n(n+1)(2n+1)−22n(n+1)+n=n(n+1)(2n+1)6−n(n+1)+n= \frac{n(n+1)(2n+1)}{6} - n(n+1) + n=6n(n+1)(2n+1)−n(n+1)+n=n(n+1)(2n+1)−6n(n+1)+6n6= \frac{n(n+1)(2n+1) - 6n(n+1) + 6n}{6}=6n(n+1)(2n+1)−6n(n+1)+6n=n[(n+1)(2n+1)−6(n+1)+6]6= \frac{n[(n+1)(2n+1) - 6(n+1) + 6]}{6}=6n[(n+1)(2n+1)−6(n+1)+6]=n[2n2+3n+1−6n−6+6]6= \frac{n[2n^2 + 3n + 1 - 6n - 6 + 6]}{6}=6n[2n2+3n+1−6n−6+6]=n(2n2−3n+1)6= \frac{n(2n^2 - 3n + 1)}{6}=6n(2n2−3n+1)=n(n−1)(2n−1)6= \frac{n(n-1)(2n-1)}{6}=6n(n−1)(2n−1)3. 最終的な答えn(n−1)(2n−1)6\frac{n(n-1)(2n-1)}{6}6n(n−1)(2n−1)