$\sum_{k=1}^{n} (2k^2 - 3k)$ を計算せよ。代数学シグマ数列和の公式計算2025/6/291. 問題の内容∑k=1n(2k2−3k)\sum_{k=1}^{n} (2k^2 - 3k)∑k=1n(2k2−3k) を計算せよ。2. 解き方の手順まず、シグマの性質を用いて、和を分解します。∑k=1n(2k2−3k)=2∑k=1nk2−3∑k=1nk\sum_{k=1}^{n} (2k^2 - 3k) = 2\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k∑k=1n(2k2−3k)=2∑k=1nk2−3∑k=1nk次に、∑k=1nk2\sum_{k=1}^{n} k^2∑k=1nk2 と ∑k=1nk\sum_{k=1}^{n} k∑k=1nk の公式を適用します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)これらの公式を代入すると、2∑k=1nk2−3∑k=1nk=2⋅n(n+1)(2n+1)6−3⋅n(n+1)22\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k = 2 \cdot \frac{n(n+1)(2n+1)}{6} - 3 \cdot \frac{n(n+1)}{2}2∑k=1nk2−3∑k=1nk=2⋅6n(n+1)(2n+1)−3⋅2n(n+1)=n(n+1)(2n+1)3−3n(n+1)2= \frac{n(n+1)(2n+1)}{3} - \frac{3n(n+1)}{2}=3n(n+1)(2n+1)−23n(n+1)=2n(n+1)(2n+1)−9n(n+1)6= \frac{2n(n+1)(2n+1) - 9n(n+1)}{6}=62n(n+1)(2n+1)−9n(n+1)=n(n+1)(2(2n+1)−9)6= \frac{n(n+1)(2(2n+1) - 9)}{6}=6n(n+1)(2(2n+1)−9)=n(n+1)(4n+2−9)6= \frac{n(n+1)(4n+2-9)}{6}=6n(n+1)(4n+2−9)=n(n+1)(4n−7)6= \frac{n(n+1)(4n-7)}{6}=6n(n+1)(4n−7)3. 最終的な答えn(n+1)(4n−7)6\frac{n(n+1)(4n-7)}{6}6n(n+1)(4n−7)