与えられた数列の和 $S_n = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}$ を求める問題です。代数学数列級数等比数列和の公式2025/6/291. 問題の内容与えられた数列の和 Sn=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1S_n = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}Sn=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1 を求める問題です。2. 解き方の手順まず、SnS_nSn を書き下します。Sn=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1S_n = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}Sn=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1次に、3Sn3S_n3Sn を計算します。3Sn=1⋅3+2⋅32+3⋅33+⋯+n⋅3n3S_n = 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \cdots + n \cdot 3^n3Sn=1⋅3+2⋅32+3⋅33+⋯+n⋅3nSnS_nSn から 3Sn3S_n3Sn を引きます。Sn−3Sn=(1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1)−(1⋅3+2⋅32+3⋅33+⋯+n⋅3n)S_n - 3S_n = (1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}) - (1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \cdots + n \cdot 3^n)Sn−3Sn=(1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1)−(1⋅3+2⋅32+3⋅33+⋯+n⋅3n)−2Sn=1+(2⋅3−1⋅3)+(3⋅32−2⋅32)+⋯+(n⋅3n−1−(n−1)⋅3n−1)−n⋅3n-2S_n = 1 + (2 \cdot 3 - 1 \cdot 3) + (3 \cdot 3^2 - 2 \cdot 3^2) + \cdots + (n \cdot 3^{n-1} - (n-1) \cdot 3^{n-1}) - n \cdot 3^n−2Sn=1+(2⋅3−1⋅3)+(3⋅32−2⋅32)+⋯+(n⋅3n−1−(n−1)⋅3n−1)−n⋅3n−2Sn=1+3+32+⋯+3n−1−n⋅3n-2S_n = 1 + 3 + 3^2 + \cdots + 3^{n-1} - n \cdot 3^n−2Sn=1+3+32+⋯+3n−1−n⋅3nここで、1+3+32+⋯+3n−11 + 3 + 3^2 + \cdots + 3^{n-1}1+3+32+⋯+3n−1 は初項1、公比3、項数nの等比数列の和なので、1+3+32+⋯+3n−1=1(3n−1)3−1=3n−121 + 3 + 3^2 + \cdots + 3^{n-1} = \frac{1(3^n - 1)}{3 - 1} = \frac{3^n - 1}{2}1+3+32+⋯+3n−1=3−11(3n−1)=23n−1したがって、−2Sn=3n−12−n⋅3n-2S_n = \frac{3^n - 1}{2} - n \cdot 3^n−2Sn=23n−1−n⋅3n−2Sn=3n−1−2n⋅3n2-2S_n = \frac{3^n - 1 - 2n \cdot 3^n}{2}−2Sn=23n−1−2n⋅3nSn=2n⋅3n−3n+1−4S_n = \frac{2n \cdot 3^n - 3^n + 1}{ -4}Sn=−42n⋅3n−3n+1Sn=−2n⋅3n+3n−14S_n = \frac{-2n \cdot 3^n + 3^n - 1}{4}Sn=4−2n⋅3n+3n−1Sn=(1−2n)3n−14S_n = \frac{(1 - 2n)3^n - 1}{4}Sn=4(1−2n)3n−13. 最終的な答えSn=(1−2n)3n−14S_n = \frac{(1-2n)3^n - 1}{4}Sn=4(1−2n)3n−1