次の和を求めよ。 $\sum_{k=1}^{n} (2k^2 - k + 3)$代数学級数シグマ計算2025/6/291. 問題の内容次の和を求めよ。∑k=1n(2k2−k+3)\sum_{k=1}^{n} (2k^2 - k + 3)∑k=1n(2k2−k+3)2. 解き方の手順まず、シグマの性質を利用して、和を分解します。∑k=1n(2k2−k+3)=2∑k=1nk2−∑k=1nk+∑k=1n3\sum_{k=1}^{n} (2k^2 - k + 3) = 2\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k + \sum_{k=1}^{n} 3∑k=1n(2k2−k+3)=2∑k=1nk2−∑k=1nk+∑k=1n3次に、それぞれの和の公式を適用します。∑k=1nk2=16n(n+1)(2n+1)\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)∑k=1nk2=61n(n+1)(2n+1)∑k=1nk=12n(n+1)\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)∑k=1nk=21n(n+1)∑k=1n3=3n\sum_{k=1}^{n} 3 = 3n∑k=1n3=3nこれらの公式を代入すると、2∑k=1nk2−∑k=1nk+∑k=1n3=2⋅16n(n+1)(2n+1)−12n(n+1)+3n2\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k + \sum_{k=1}^{n} 3 = 2 \cdot \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) + 3n2∑k=1nk2−∑k=1nk+∑k=1n3=2⋅61n(n+1)(2n+1)−21n(n+1)+3n式を整理します。13n(n+1)(2n+1)−12n(n+1)+3n=n6[2(n+1)(2n+1)−3(n+1)+18]\frac{1}{3}n(n+1)(2n+1) - \frac{1}{2}n(n+1) + 3n = \frac{n}{6}[2(n+1)(2n+1) - 3(n+1) + 18]31n(n+1)(2n+1)−21n(n+1)+3n=6n[2(n+1)(2n+1)−3(n+1)+18]=n6[2(2n2+3n+1)−3n−3+18]=n6[4n2+6n+2−3n−3+18]= \frac{n}{6}[2(2n^2 + 3n + 1) - 3n - 3 + 18] = \frac{n}{6}[4n^2 + 6n + 2 - 3n - 3 + 18]=6n[2(2n2+3n+1)−3n−3+18]=6n[4n2+6n+2−3n−3+18]=n6[4n2+3n+17]=4n3+3n2+17n6= \frac{n}{6}[4n^2 + 3n + 17] = \frac{4n^3 + 3n^2 + 17n}{6}=6n[4n2+3n+17]=64n3+3n2+17n3. 最終的な答え4n3+3n2+17n6\frac{4n^3 + 3n^2 + 17n}{6}64n3+3n2+17n