以下の定積分を計算します。 $\int_{1}^{2} [x\log x - (\log t + 1)x + t]dx$解析学定積分部分積分対数関数2025/6/291. 問題の内容以下の定積分を計算します。∫12[xlogx−(logt+1)x+t]dx\int_{1}^{2} [x\log x - (\log t + 1)x + t]dx∫12[xlogx−(logt+1)x+t]dx2. 解き方の手順まず、積分の中身を整理します。∫12[xlogx−xlogt−x+t]dx\int_{1}^{2} [x\log x - x\log t - x + t]dx∫12[xlogx−xlogt−x+t]dx次に、各項ごとに積分を行います。∫12xlogxdx−∫12xlogtdx−∫12xdx+∫12tdx\int_{1}^{2} x\log x dx - \int_{1}^{2} x\log t dx - \int_{1}^{2} x dx + \int_{1}^{2} t dx∫12xlogxdx−∫12xlogtdx−∫12xdx+∫12tdxそれぞれの積分を計算します。∫12xlogxdx\int_{1}^{2} x\log x dx∫12xlogxdx:部分積分を用います。u=logx,dv=xdxu = \log x, dv = x dxu=logx,dv=xdx とすると、du=1xdx,v=x22du = \frac{1}{x}dx, v = \frac{x^2}{2}du=x1dx,v=2x2 となります。∫xlogxdx=x22logx−∫x22⋅1xdx=x22logx−∫x2dx=x22logx−x24\int x\log x dx = \frac{x^2}{2}\log x - \int \frac{x^2}{2} \cdot \frac{1}{x} dx = \frac{x^2}{2}\log x - \int \frac{x}{2} dx = \frac{x^2}{2}\log x - \frac{x^2}{4}∫xlogxdx=2x2logx−∫2x2⋅x1dx=2x2logx−∫2xdx=2x2logx−4x2したがって、∫12xlogxdx=[x22logx−x24]12=(2log2−1)−(0−14)=2log2−34\int_{1}^{2} x\log x dx = [\frac{x^2}{2}\log x - \frac{x^2}{4}]_{1}^{2} = (2\log 2 - 1) - (0 - \frac{1}{4}) = 2\log 2 - \frac{3}{4}∫12xlogxdx=[2x2logx−4x2]12=(2log2−1)−(0−41)=2log2−43∫12xlogtdx\int_{1}^{2} x\log t dx∫12xlogtdx:logt\log tlogt は定数なので、 logt∫12xdx=logt[x22]12=logt(2−12)=32logt\log t \int_{1}^{2} x dx = \log t [\frac{x^2}{2}]_{1}^{2} = \log t (2 - \frac{1}{2}) = \frac{3}{2}\log tlogt∫12xdx=logt[2x2]12=logt(2−21)=23logt∫12xdx\int_{1}^{2} x dx∫12xdx:∫12xdx=[x22]12=2−12=32\int_{1}^{2} x dx = [\frac{x^2}{2}]_{1}^{2} = 2 - \frac{1}{2} = \frac{3}{2}∫12xdx=[2x2]12=2−21=23∫12tdx\int_{1}^{2} t dx∫12tdx:ttt は定数なので、 ∫12tdx=t[x]12=t(2−1)=t\int_{1}^{2} t dx = t[x]_{1}^{2} = t(2-1) = t∫12tdx=t[x]12=t(2−1)=tこれらの結果を代入します。2log2−34−32logt−32+t=2log2−94−32logt+t2\log 2 - \frac{3}{4} - \frac{3}{2}\log t - \frac{3}{2} + t = 2\log 2 - \frac{9}{4} - \frac{3}{2}\log t + t2log2−43−23logt−23+t=2log2−49−23logt+t3. 最終的な答えt+2log(2)−32log(t)−94t+2\log(2)-\frac{3}{2}\log(t)-\frac{9}{4}t+2log(2)−23log(t)−49または、t+log(4)−log(t32)−94t + \log(4) - \log(t^{\frac{3}{2}}) - \frac{9}{4}t+log(4)−log(t23)−49または、t+log(4t3)−94t + \log(\frac{4}{\sqrt{t^3}}) - \frac{9}{4}t+log(t34)−49