次の和 $S$ を求める問題です。 $S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + 4 \cdot 3^3 + \dots + n \cdot 3^{n-1}$代数学数列級数等比数列の和計算2025/6/291. 問題の内容次の和 SSS を求める問題です。S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + 4 \cdot 3^3 + \dots + n \cdot 3^{n-1}S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−12. 解き方の手順まず、SSS を書き下します。S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + 4 \cdot 3^3 + \dots + n \cdot 3^{n-1}S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−1次に、3S3S3S を書き下します。3S=1⋅3+2⋅32+3⋅33+⋯+(n−1)⋅3n−1+n⋅3n3S = 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + (n-1) \cdot 3^{n-1} + n \cdot 3^n3S=1⋅3+2⋅32+3⋅33+⋯+(n−1)⋅3n−1+n⋅3nS−3SS - 3SS−3S を計算します。−2S=1+3+32+33+⋯+3n−1−n⋅3n-2S = 1 + 3 + 3^2 + 3^3 + \dots + 3^{n-1} - n \cdot 3^n−2S=1+3+32+33+⋯+3n−1−n⋅3n1+3+32+33+⋯+3n−11 + 3 + 3^2 + 3^3 + \dots + 3^{n-1}1+3+32+33+⋯+3n−1 は初項1、公比3、項数nの等比数列の和なので、1+3+32+33+⋯+3n−1=1⋅(3n−1)3−1=3n−121 + 3 + 3^2 + 3^3 + \dots + 3^{n-1} = \frac{1 \cdot (3^n - 1)}{3-1} = \frac{3^n - 1}{2}1+3+32+33+⋯+3n−1=3−11⋅(3n−1)=23n−1したがって、−2S=3n−12−n⋅3n-2S = \frac{3^n - 1}{2} - n \cdot 3^n−2S=23n−1−n⋅3nS=−12(3n−12−n⋅3n)S = -\frac{1}{2} \left( \frac{3^n - 1}{2} - n \cdot 3^n \right)S=−21(23n−1−n⋅3n)S=−14(3n−1−2n⋅3n)S = -\frac{1}{4} (3^n - 1 - 2n \cdot 3^n)S=−41(3n−1−2n⋅3n)S=2n⋅3n−3n+14S = \frac{2n \cdot 3^n - 3^n + 1}{4}S=42n⋅3n−3n+1S=(2n−1)3n+14S = \frac{(2n - 1)3^n + 1}{4}S=4(2n−1)3n+13. 最終的な答え(2n−1)3n+14\frac{(2n-1)3^n + 1}{4}4(2n−1)3n+1