問題は、次の数列の和を求めることです。 $1^2 \cdot 2 + 2^2 \cdot 3 + 3^2 \cdot 4 + \dots + n^2(n+1)$代数学数列級数シグマ等比数列代数2025/6/291. 問題の内容問題は、次の数列の和を求めることです。12⋅2+22⋅3+32⋅4+⋯+n2(n+1)1^2 \cdot 2 + 2^2 \cdot 3 + 3^2 \cdot 4 + \dots + n^2(n+1)12⋅2+22⋅3+32⋅4+⋯+n2(n+1)2. 解き方の手順まず、一般項を aka_kak とすると、ak=k2(k+1)=k3+k2a_k = k^2(k+1) = k^3 + k^2ak=k2(k+1)=k3+k2となります。求める和を SnS_nSn とすると、Sn=∑k=1nak=∑k=1n(k3+k2)=∑k=1nk3+∑k=1nk2S_n = \sum_{k=1}^{n} a_k = \sum_{k=1}^{n} (k^3 + k^2) = \sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k^2Sn=∑k=1nak=∑k=1n(k3+k2)=∑k=1nk3+∑k=1nk2となります。∑k=1nk3=(n(n+1)2)2=n2(n+1)24\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2 = \frac{n^2(n+1)^2}{4}∑k=1nk3=(2n(n+1))2=4n2(n+1)2∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)したがって、Sn=n2(n+1)24+n(n+1)(2n+1)6S_n = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6}Sn=4n2(n+1)2+6n(n+1)(2n+1)=3n2(n+1)2+2n(n+1)(2n+1)12= \frac{3n^2(n+1)^2 + 2n(n+1)(2n+1)}{12}=123n2(n+1)2+2n(n+1)(2n+1)=n(n+1)[3n(n+1)+2(2n+1)]12= \frac{n(n+1)[3n(n+1) + 2(2n+1)]}{12}=12n(n+1)[3n(n+1)+2(2n+1)]=n(n+1)[3n2+3n+4n+2]12= \frac{n(n+1)[3n^2 + 3n + 4n + 2]}{12}=12n(n+1)[3n2+3n+4n+2]=n(n+1)[3n2+7n+2]12= \frac{n(n+1)[3n^2 + 7n + 2]}{12}=12n(n+1)[3n2+7n+2]=n(n+1)(n+2)(3n+1)12= \frac{n(n+1)(n+2)(3n+1)}{12}=12n(n+1)(n+2)(3n+1)3. 最終的な答えn(n+1)(n+2)(3n+1)12\frac{n(n+1)(n+2)(3n+1)}{12}12n(n+1)(n+2)(3n+1)