与えられた式 $\sqrt{-63} + \sqrt{-28} - \frac{\sqrt{42}}{\sqrt{-6}}$ を計算せよ。代数学複素数根号計算2025/6/291. 問題の内容与えられた式 −63+−28−42−6\sqrt{-63} + \sqrt{-28} - \frac{\sqrt{42}}{\sqrt{-6}}−63+−28−−642 を計算せよ。2. 解き方の手順まず、−1=i\sqrt{-1} = i−1=i を用いて、根号の中が負の数を虚数に変換します。−63=63i=9×7i=37i\sqrt{-63} = \sqrt{63}i = \sqrt{9 \times 7}i = 3\sqrt{7}i−63=63i=9×7i=37i−28=28i=4×7i=27i\sqrt{-28} = \sqrt{28}i = \sqrt{4 \times 7}i = 2\sqrt{7}i−28=28i=4×7i=27i42−6=426i=766i=7i=7ii2=7i−1=−7i\frac{\sqrt{42}}{\sqrt{-6}} = \frac{\sqrt{42}}{\sqrt{6}i} = \frac{\sqrt{7}\sqrt{6}}{\sqrt{6}i} = \frac{\sqrt{7}}{i} = \frac{\sqrt{7}i}{i^2} = \frac{\sqrt{7}i}{-1} = -\sqrt{7}i−642=6i42=6i76=i7=i27i=−17i=−7iしたがって、−63+−28−42−6=37i+27i−(−7i)=37i+27i+7i=(3+2+1)7i=67i\sqrt{-63} + \sqrt{-28} - \frac{\sqrt{42}}{\sqrt{-6}} = 3\sqrt{7}i + 2\sqrt{7}i - (-\sqrt{7}i) = 3\sqrt{7}i + 2\sqrt{7}i + \sqrt{7}i = (3+2+1)\sqrt{7}i = 6\sqrt{7}i−63+−28−−642=37i+27i−(−7i)=37i+27i+7i=(3+2+1)7i=67i3. 最終的な答え67i6\sqrt{7}i67i