## 1. 問題の内容

解析学積分部分分数分解
2025/6/29
##

1. 問題の内容

与えられた積分問題を解く。具体的には、以下の8つの積分を計算する。

1. $\int \frac{1}{(x+1)(2x+1)}dx$

2. $\int \frac{x^2}{x^2-1}dx$

3. $\int \frac{3x+2}{x^2(x+1)}dx$

4. $\int \frac{1}{(x+1)^2(x+2)}dx$

5. $\int \frac{x+5}{x(x^2+4x+5)}dx$

6. $\int \frac{1}{x^3+1}dx$

7. $\int \frac{x^4}{(x^2+2)^2}dx$

8. $\int \frac{1}{(x-1)(x-2)(x-3)}dx$

##

2. 解き方の手順

各積分について、以下の手順で解いていく。

1. $\int \frac{1}{(x+1)(2x+1)}dx$

部分分数分解を行う。
1(x+1)(2x+1)=Ax+1+B2x+1\frac{1}{(x+1)(2x+1)} = \frac{A}{x+1} + \frac{B}{2x+1}
1=A(2x+1)+B(x+1)1 = A(2x+1) + B(x+1)
x=1x = -1のとき、1=A    A=11 = -A \implies A = -1
x=12x = -\frac{1}{2}のとき、1=B(12)    B=21 = B(\frac{1}{2}) \implies B = 2
よって、
1(x+1)(2x+1)dx=(1x+1+22x+1)dx=lnx+1+ln2x+1+C=ln2x+1x+1+C\int \frac{1}{(x+1)(2x+1)}dx = \int \left( \frac{-1}{x+1} + \frac{2}{2x+1} \right)dx = -\ln|x+1| + \ln|2x+1| + C = \ln \left| \frac{2x+1}{x+1} \right| + C

2. $\int \frac{x^2}{x^2-1}dx$

x2x21=x21+1x21=1+1x21=1+1(x1)(x+1)\frac{x^2}{x^2-1} = \frac{x^2-1+1}{x^2-1} = 1 + \frac{1}{x^2-1} = 1 + \frac{1}{(x-1)(x+1)}
部分分数分解を行う。
1(x1)(x+1)=Ax1+Bx+1\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}
1=A(x+1)+B(x1)1 = A(x+1) + B(x-1)
x=1x = 1のとき、1=2A    A=121 = 2A \implies A = \frac{1}{2}
x=1x = -1のとき、1=2B    B=121 = -2B \implies B = -\frac{1}{2}
よって、
x2x21dx=(1+1/2x11/2x+1)dx=x+12lnx112lnx+1+C=x+12lnx1x+1+C\int \frac{x^2}{x^2-1}dx = \int \left( 1 + \frac{1/2}{x-1} - \frac{1/2}{x+1} \right)dx = x + \frac{1}{2}\ln|x-1| - \frac{1}{2}\ln|x+1| + C = x + \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| + C

3. $\int \frac{3x+2}{x^2(x+1)}dx$

部分分数分解を行う。
3x+2x2(x+1)=Ax+Bx2+Cx+1\frac{3x+2}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}
3x+2=Ax(x+1)+B(x+1)+Cx23x+2 = Ax(x+1) + B(x+1) + Cx^2
3x+2=(A+C)x2+(A+B)x+B3x+2 = (A+C)x^2 + (A+B)x + B
B=2B = 2
A+B=3    A=1A+B = 3 \implies A = 1
A+C=0    C=1A+C = 0 \implies C = -1
よって、
3x+2x2(x+1)dx=(1x+2x21x+1)dx=lnx2xlnx+1+C=lnxx+12x+C\int \frac{3x+2}{x^2(x+1)}dx = \int \left( \frac{1}{x} + \frac{2}{x^2} - \frac{1}{x+1} \right)dx = \ln|x| - \frac{2}{x} - \ln|x+1| + C = \ln \left| \frac{x}{x+1} \right| - \frac{2}{x} + C

4. $\int \frac{1}{(x+1)^2(x+2)}dx$

部分分数分解を行う。
1(x+1)2(x+2)=Ax+1+B(x+1)2+Cx+2\frac{1}{(x+1)^2(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+2}
1=A(x+1)(x+2)+B(x+2)+C(x+1)21 = A(x+1)(x+2) + B(x+2) + C(x+1)^2
x=1x = -1のとき、1=B(1)    B=11 = B(1) \implies B = 1
x=2x = -2のとき、1=C(1)2    C=11 = C(-1)^2 \implies C = 1
x=0x = 0のとき、1=A(1)(2)+B(2)+C(1)=2A+2+1    2A=2    A=11 = A(1)(2) + B(2) + C(1) = 2A + 2 + 1 \implies 2A = -2 \implies A = -1
よって、
1(x+1)2(x+2)dx=(1x+1+1(x+1)2+1x+2)dx=lnx+11x+1+lnx+2+C=lnx+2x+11x+1+C\int \frac{1}{(x+1)^2(x+2)}dx = \int \left( \frac{-1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{x+2} \right)dx = -\ln|x+1| - \frac{1}{x+1} + \ln|x+2| + C = \ln \left| \frac{x+2}{x+1} \right| - \frac{1}{x+1} + C

5. $\int \frac{x+5}{x(x^2+4x+5)}dx$

部分分数分解を行う。
x+5x(x2+4x+5)=Ax+Bx+Cx2+4x+5\frac{x+5}{x(x^2+4x+5)} = \frac{A}{x} + \frac{Bx+C}{x^2+4x+5}
x+5=A(x2+4x+5)+(Bx+C)xx+5 = A(x^2+4x+5) + (Bx+C)x
x+5=(A+B)x2+(4A+C)x+5Ax+5 = (A+B)x^2 + (4A+C)x + 5A
5A=5    A=15A = 5 \implies A = 1
4A+C=1    C=34A+C = 1 \implies C = -3
A+B=0    B=1A+B = 0 \implies B = -1
よって、
x+5x(x2+4x+5)dx=(1x+x3x2+4x+5)dx=lnxx+3x2+4x+5dx\int \frac{x+5}{x(x^2+4x+5)}dx = \int \left( \frac{1}{x} + \frac{-x-3}{x^2+4x+5} \right)dx = \ln|x| - \int \frac{x+3}{x^2+4x+5}dx
x2+4x+5=(x+2)2+1x^2+4x+5 = (x+2)^2+1より、u=x+2u = x+2とすると、x+3=u+1x+3 = u+1
x+3x2+4x+5dx=u+1u2+1du=uu2+1du+1u2+1du=12ln(u2+1)+arctan(u)+C1=12ln(x2+4x+5)+arctan(x+2)+C1\int \frac{x+3}{x^2+4x+5}dx = \int \frac{u+1}{u^2+1}du = \int \frac{u}{u^2+1}du + \int \frac{1}{u^2+1}du = \frac{1}{2}\ln(u^2+1) + \arctan(u) + C_1 = \frac{1}{2}\ln(x^2+4x+5) + \arctan(x+2) + C_1
x+5x(x2+4x+5)dx=lnx12ln(x2+4x+5)arctan(x+2)+C\int \frac{x+5}{x(x^2+4x+5)}dx = \ln|x| - \frac{1}{2}\ln(x^2+4x+5) - \arctan(x+2) + C

6. $\int \frac{1}{x^3+1}dx$

x3+1=(x+1)(x2x+1)x^3+1 = (x+1)(x^2-x+1)
部分分数分解を行う。
1x3+1=Ax+1+Bx+Cx2x+1\frac{1}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}
1=A(x2x+1)+(Bx+C)(x+1)1 = A(x^2-x+1) + (Bx+C)(x+1)
1=(A+B)x2+(A+B+C)x+(A+C)1 = (A+B)x^2 + (-A+B+C)x + (A+C)
A+B=0A+B = 0
A+B+C=0-A+B+C = 0
A+C=1A+C = 1
B=AB = -A
AA+C=0    2A+C=0    C=2A-A-A+C = 0 \implies -2A+C = 0 \implies C = 2A
A+2A=1    3A=1    A=13A+2A = 1 \implies 3A = 1 \implies A = \frac{1}{3}
B=13B = -\frac{1}{3}
C=23C = \frac{2}{3}
1x3+1dx=(1/3x+1+x/3+2/3x2x+1)dx=13lnx+1+13x+2x2x+1dx\int \frac{1}{x^3+1}dx = \int \left( \frac{1/3}{x+1} + \frac{-x/3 + 2/3}{x^2-x+1} \right)dx = \frac{1}{3}\ln|x+1| + \frac{1}{3}\int \frac{-x+2}{x^2-x+1}dx
x+2x2x+1dx=122x4x2x+1dx=122x13x2x+1dx=12lnx2x+1+321x2x+1dx\int \frac{-x+2}{x^2-x+1}dx = -\frac{1}{2} \int \frac{2x-4}{x^2-x+1}dx = -\frac{1}{2} \int \frac{2x-1-3}{x^2-x+1}dx = -\frac{1}{2}\ln|x^2-x+1| + \frac{3}{2} \int \frac{1}{x^2-x+1}dx
1x2x+1dx=1(x1/2)2+3/4dx=23arctan(2x13)\int \frac{1}{x^2-x+1}dx = \int \frac{1}{(x-1/2)^2 + 3/4}dx = \frac{2}{\sqrt{3}}\arctan\left(\frac{2x-1}{\sqrt{3}}\right)
1x3+1dx=13lnx+116lnx2x+1+13arctan(2x13)+C\int \frac{1}{x^3+1}dx = \frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C

7. $\int \frac{x^4}{(x^2+2)^2}dx$

x4(x2+2)2=(x4+4x2+4)4x24(x2+2)2=14x2+4(x2+2)2=14(x2+2)4(x2+2)2=14x2+2+4(x2+2)2\frac{x^4}{(x^2+2)^2} = \frac{(x^4+4x^2+4) - 4x^2 - 4}{(x^2+2)^2} = 1 - \frac{4x^2+4}{(x^2+2)^2} = 1 - \frac{4(x^2+2)-4}{(x^2+2)^2} = 1 - \frac{4}{x^2+2} + \frac{4}{(x^2+2)^2}
1x2+2dx=12arctan(x2)\int \frac{1}{x^2+2} dx = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)
1(x2+2)2dx\int \frac{1}{(x^2+2)^2} dx. Let x=2tanθx = \sqrt{2}\tan\theta
Then dx=2sec2θdθdx = \sqrt{2}\sec^2\theta d\theta
2sec2θ(2tan2θ+2)2dθ=24sec2θsec4θdθ=24cos2θdθ=241+cos2θ2dθ=28(θ+12sin2θ)=28(arctan(x2)+x2x2+2)\int \frac{\sqrt{2}\sec^2\theta}{(2\tan^2\theta+2)^2} d\theta = \frac{\sqrt{2}}{4} \int \frac{\sec^2\theta}{\sec^4\theta} d\theta = \frac{\sqrt{2}}{4} \int \cos^2\theta d\theta = \frac{\sqrt{2}}{4} \int \frac{1+\cos2\theta}{2} d\theta = \frac{\sqrt{2}}{8} (\theta + \frac{1}{2}\sin2\theta) = \frac{\sqrt{2}}{8} \left(\arctan\left(\frac{x}{\sqrt{2}}\right) + \frac{x\sqrt{2}}{x^2+2}\right)
So the result is
x4(x2+2)2dx=x42arctan(x2)+4(28(arctan(x2)+x2x2+2))=x2arctan(x2)+22(arctan(x2)+x2x2+2)\int \frac{x^4}{(x^2+2)^2}dx = x - \frac{4}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + 4 \left(\frac{\sqrt{2}}{8} \left(\arctan\left(\frac{x}{\sqrt{2}}\right) + \frac{x\sqrt{2}}{x^2+2}\right)\right) = x - \sqrt{2} \arctan\left(\frac{x}{\sqrt{2}}\right) + \frac{\sqrt{2}}{2}\left(\arctan\left(\frac{x}{\sqrt{2}}\right) + \frac{x\sqrt{2}}{x^2+2}\right)
=x22arctan(x2)+xx2+2+C= x - \frac{\sqrt{2}}{2}\arctan\left(\frac{x}{\sqrt{2}}\right) + \frac{x}{x^2+2} + C

8. $\int \frac{1}{(x-1)(x-2)(x-3)}dx$

部分分数分解を行う。
1(x1)(x2)(x3)=Ax1+Bx2+Cx3\frac{1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}
1=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)
x=1x=1のとき、1=A(1)(2)=2A    A=121 = A(-1)(-2) = 2A \implies A = \frac{1}{2}
x=2x=2のとき、1=B(1)(1)=B    B=11 = B(1)(-1) = -B \implies B = -1
x=3x=3のとき、1=C(2)(1)=2C    C=121 = C(2)(1) = 2C \implies C = \frac{1}{2}
よって、
1(x1)(x2)(x3)dx=(1/2x11x2+1/2x3)dx=12lnx1lnx2+12lnx3+C=12ln(x1)(x3)(x2)2+C\int \frac{1}{(x-1)(x-2)(x-3)}dx = \int \left( \frac{1/2}{x-1} - \frac{1}{x-2} + \frac{1/2}{x-3} \right)dx = \frac{1}{2}\ln|x-1| - \ln|x-2| + \frac{1}{2}\ln|x-3| + C = \frac{1}{2}\ln\left| \frac{(x-1)(x-3)}{(x-2)^2} \right| + C
##

3. 最終的な答え

1. $\ln \left| \frac{2x+1}{x+1} \right| + C$

2. $x + \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| + C$

3. $\ln \left| \frac{x}{x+1} \right| - \frac{2}{x} + C$

4. $\ln \left| \frac{x+2}{x+1} \right| - \frac{1}{x+1} + C$

5. $\ln|x| - \frac{1}{2}\ln(x^2+4x+5) - \arctan(x+2) + C$

6. $\frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C$

7. $x - \frac{\sqrt{2}}{2}\arctan\left(\frac{x}{\sqrt{2}}\right) + \frac{x}{x^2+2} + C$

8. $\frac{1}{2}\ln\left| \frac{(x-1)(x-3)}{(x-2)^2} \right| + C$

「解析学」の関連問題

$\sin\theta\cos\theta = -\frac{1}{4}$ のとき、$\theta$ の動径は第4象限にあるとして、次の値を求めよ。 (1) $\sin\theta - \cos\th...

三角関数三角関数の合成象限恒等式
2025/6/29

$S = \frac{1}{1+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{9}} + \frac{1}{\sqrt{9}+\sqrt{13}} + \cdots + \f...

数列有理化telescoping sum
2025/6/29

定積分 $\int_{-1}^{3} |x^2 - 4| dx$ を計算してください。

定積分絶対値積分計算
2025/6/29

$\cos \frac{5}{4}\pi$ の値を求めよ。

三角関数cos角度
2025/6/29

与えられた恒等式 $\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right)$ を利用して...

級数部分分数分解望遠鏡和
2025/6/29

与えられた数列の和 $S$ を求めます。数列は以下の通りです。 $S = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4}...

数列級数部分分数分解telescoping sum望遠鏡和
2025/6/29

関数 $y = 2(\sin\theta + \cos\theta) + 2\sin\theta\cos\theta - 3$ ($0 \le \theta \le \pi$)について、次の問いに答え...

三角関数最大値最小値関数の合成三角関数の合成
2025/6/29

与えられた三角関数の式 $\sin(\theta + \frac{\pi}{3}) + \sin(\theta - \frac{\pi}{3}) - \sin(\theta)$ を簡単にせよ。

三角関数加法定理三角関数の簡約
2025/6/29

与えられた無限級数が収束することを示し、その和を求めます。問題は2つあります。 (1) $\frac{1}{2\cdot5} + \frac{1}{5\cdot8} + \frac{1}{8\cdot...

無限級数収束部分分数分解極限
2025/6/29

$0 \le x < 2\pi$ の範囲で、関数 $y = \cos 2x + \sin x$ の最大値、最小値とそのときの $x$ の値を求めよ。

三角関数最大値最小値二次関数微分
2025/6/29