与えられた極限を定積分で表す問題です。問題は以下の通りです。 $\lim_{n \to \infty} (\log \sqrt{n+1} + \log \sqrt{n+2} + \dots + \log \sqrt{2n} - \log n)$解析学極限定積分対数関数積分2025/6/301. 問題の内容与えられた極限を定積分で表す問題です。問題は以下の通りです。limn→∞(logn+1+logn+2+⋯+log2n−logn)\lim_{n \to \infty} (\log \sqrt{n+1} + \log \sqrt{n+2} + \dots + \log \sqrt{2n} - \log n)limn→∞(logn+1+logn+2+⋯+log2n−logn)2. 解き方の手順まず、対数の性質を使って式を整理します。loga+logb=log(ab)\log a + \log b = \log (ab)loga+logb=log(ab)loga−logb=log(a/b)\log a - \log b = \log (a/b)loga−logb=log(a/b)logab=bloga\log a^b = b\log alogab=blogaを用いて与式を変形します。limn→∞(logn+1+logn+2+⋯+log2n−logn)\lim_{n \to \infty} (\log \sqrt{n+1} + \log \sqrt{n+2} + \dots + \log \sqrt{2n} - \log n)limn→∞(logn+1+logn+2+⋯+log2n−logn)=limn→∞(∑k=1nlogn+k−logn)= \lim_{n \to \infty} \left( \sum_{k=1}^n \log \sqrt{n+k} - \log n \right)=limn→∞(∑k=1nlogn+k−logn)=limn→∞(∑k=1nlogn+k−∑k=1nlogn2)= \lim_{n \to \infty} \left( \sum_{k=1}^n \log \sqrt{n+k} - \sum_{k=1}^n \log \sqrt{n^2} \right)=limn→∞(∑k=1nlogn+k−∑k=1nlogn2)=limn→∞(∑k=1nlogn+k−∑k=1nlogn)= \lim_{n \to \infty} \left( \sum_{k=1}^n \log \sqrt{n+k} - \sum_{k=1}^n \log n \right)=limn→∞(∑k=1nlogn+k−∑k=1nlogn)=limn→∞∑k=1n(logn+k−logn)= \lim_{n \to \infty} \sum_{k=1}^n (\log \sqrt{n+k} - \log n)=limn→∞∑k=1n(logn+k−logn)=limn→∞∑k=1nlog(n+kn)= \lim_{n \to \infty} \sum_{k=1}^n \log \left( \frac{\sqrt{n+k}}{n} \right)=limn→∞∑k=1nlog(nn+k)=limn→∞∑k=1nlogn+kn2= \lim_{n \to \infty} \sum_{k=1}^n \log \sqrt{\frac{n+k}{n^2}}=limn→∞∑k=1nlogn2n+k=limn→∞∑k=1nlogn+kn⋅1n= \lim_{n \to \infty} \sum_{k=1}^n \log \sqrt{\frac{n+k}{n} \cdot \frac{1}{n}}=limn→∞∑k=1nlognn+k⋅n1=limn→∞∑k=1nlogn(1+k/n)n⋅1n= \lim_{n \to \infty} \sum_{k=1}^n \log \sqrt{\frac{n(1+k/n)}{n} \cdot \frac{1}{n}}=limn→∞∑k=1nlognn(1+k/n)⋅n1=limn→∞∑k=1nlog(1+k/nn)= \lim_{n \to \infty} \sum_{k=1}^n \log \left( \frac{\sqrt{1+k/n}}{\sqrt{n}} \right)=limn→∞∑k=1nlog(n1+k/n)=limn→∞12∑k=1nlog(1+k/n)−12logn∑k=1n1= \lim_{n \to \infty} \frac{1}{2} \sum_{k=1}^n \log (1+k/n) - \frac{1}{2} \log n \sum_{k=1}^n 1=limn→∞21∑k=1nlog(1+k/n)−21logn∑k=1n1=limn→∞∑k=1nlog(1+kn)= \lim_{n \to \infty} \sum_{k=1}^n \log \left( \sqrt{1+\frac{k}{n}} \right)=limn→∞∑k=1nlog(1+nk)=limn→∞∑k=1nlog1+kn= \lim_{n \to \infty} \sum_{k=1}^n \log \sqrt{1 + \frac{k}{n}}=limn→∞∑k=1nlog1+nk=limn→∞∑k=1n12log(1+kn)= \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2} \log \left(1 + \frac{k}{n} \right)=limn→∞∑k=1n21log(1+nk)=limn→∞∑k=1n12log(1+kn)⋅1n⋅n= \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2} \log \left(1 + \frac{k}{n} \right) \cdot \frac{1}{n} \cdot n=limn→∞∑k=1n21log(1+nk)⋅n1⋅n=12limn→∞∑k=1nlog(1+kn)1n⋅n= \frac{1}{2} \lim_{n \to \infty} \sum_{k=1}^n \log \left(1 + \frac{k}{n} \right) \frac{1}{n} \cdot n=21limn→∞∑k=1nlog(1+nk)n1⋅nここで、nnn が邪魔なので、別の方法で考えてみます。limn→∞(logn+1+logn+2+⋯+log2n−logn)\lim_{n \to \infty} (\log \sqrt{n+1} + \log \sqrt{n+2} + \dots + \log \sqrt{2n} - \log n)limn→∞(logn+1+logn+2+⋯+log2n−logn)=limn→∞[∑k=1nlogn+k−nlogn]= \lim_{n \to \infty} \left[ \sum_{k=1}^n \log \sqrt{n+k} - n \log n \right]=limn→∞[∑k=1nlogn+k−nlogn]=limn→∞[∑k=1n12log(n+k)−nlogn]= \lim_{n \to \infty} \left[ \sum_{k=1}^n \frac{1}{2} \log (n+k) - n \log n \right]=limn→∞[∑k=1n21log(n+k)−nlogn]=limn→∞12[∑k=1nlog(n+k)−2nlogn]= \lim_{n \to \infty} \frac{1}{2} \left[ \sum_{k=1}^n \log (n+k) - 2n \log n \right]=limn→∞21[∑k=1nlog(n+k)−2nlogn]=limn→∞12[∑k=1nlog(n(1+k/n))−∑k=1n2logn]= \lim_{n \to \infty} \frac{1}{2} \left[ \sum_{k=1}^n \log (n(1+k/n)) - \sum_{k=1}^n 2\log n \right]=limn→∞21[∑k=1nlog(n(1+k/n))−∑k=1n2logn]=limn→∞12[∑k=1n(logn+log(1+k/n))−∑k=1nlogn2]= \lim_{n \to \infty} \frac{1}{2} \left[ \sum_{k=1}^n (\log n + \log (1+k/n)) - \sum_{k=1}^n \log n^2 \right]=limn→∞21[∑k=1n(logn+log(1+k/n))−∑k=1nlogn2]=limn→∞12[∑k=1nlogn+∑k=1nlog(1+k/n)−∑k=1n2logn]= \lim_{n \to \infty} \frac{1}{2} \left[ \sum_{k=1}^n \log n + \sum_{k=1}^n \log (1+k/n) - \sum_{k=1}^n 2\log n \right]=limn→∞21[∑k=1nlogn+∑k=1nlog(1+k/n)−∑k=1n2logn]=limn→∞12[nlogn+∑k=1nlog(1+k/n)−2nlogn]= \lim_{n \to \infty} \frac{1}{2} \left[ n \log n + \sum_{k=1}^n \log (1+k/n) - 2n\log n \right]=limn→∞21[nlogn+∑k=1nlog(1+k/n)−2nlogn]=limn→∞12[∑k=1nlog(1+k/n)−nlogn]= \lim_{n \to \infty} \frac{1}{2} \left[ \sum_{k=1}^n \log (1+k/n) - n \log n \right]=limn→∞21[∑k=1nlog(1+k/n)−nlogn]=limn→∞12∑k=1nlog(1+k/n)−12nlogn= \lim_{n \to \infty} \frac{1}{2} \sum_{k=1}^n \log (1+k/n) - \frac{1}{2} n\log n=limn→∞21∑k=1nlog(1+k/n)−21nlogn=12∫01log(1+x)dx= \frac{1}{2} \int_0^1 \log (1+x) dx=21∫01log(1+x)dx∫log(1+x)dx=(1+x)log(1+x)−(1+x)\int \log(1+x) dx = (1+x)\log(1+x)-(1+x)∫log(1+x)dx=(1+x)log(1+x)−(1+x)∫01log(1+x)dx=2log2−2−(1log1−1)=2log2−1\int_0^1 \log(1+x) dx = 2\log2-2 - (1\log 1 - 1) = 2 \log 2 - 1∫01log(1+x)dx=2log2−2−(1log1−1)=2log2−1=12(2log2−1)=log2−12= \frac{1}{2} (2\log 2 - 1) = \log 2 - \frac{1}{2}=21(2log2−1)=log2−213. 最終的な答えlog2−12\log 2 - \frac{1}{2}log2−21