数列 $\{a_n\}$ が以下の条件で与えられているとき、一般項 $a_n$ を求めよ。 $a_1 = 10$ $a_{n+1} = 3a_n + 2^{n+2}$代数学数列漸化式等比数列2025/6/301. 問題の内容数列 {an}\{a_n\}{an} が以下の条件で与えられているとき、一般項 ana_nan を求めよ。a1=10a_1 = 10a1=10an+1=3an+2n+2a_{n+1} = 3a_n + 2^{n+2}an+1=3an+2n+22. 解き方の手順まず、an+1=3an+2n+2a_{n+1} = 3a_n + 2^{n+2}an+1=3an+2n+2 の両辺を 3n+13^{n+1}3n+1 で割る。an+13n+1=3an3n+1+2n+23n+1\frac{a_{n+1}}{3^{n+1}} = \frac{3a_n}{3^{n+1}} + \frac{2^{n+2}}{3^{n+1}}3n+1an+1=3n+13an+3n+12n+2an+13n+1=an3n+43(23)n\frac{a_{n+1}}{3^{n+1}} = \frac{a_n}{3^n} + \frac{4}{3}(\frac{2}{3})^n3n+1an+1=3nan+34(32)nbn=an3nb_n = \frac{a_n}{3^n}bn=3nan とおくと、bn+1=bn+43(23)nb_{n+1} = b_n + \frac{4}{3}(\frac{2}{3})^nbn+1=bn+34(32)nb1=a131=103b_1 = \frac{a_1}{3^1} = \frac{10}{3}b1=31a1=310bn+1−bn=43(23)nb_{n+1} - b_n = \frac{4}{3}(\frac{2}{3})^nbn+1−bn=34(32)nn≥2n \ge 2n≥2 のとき、bn=b1+∑k=1n−1(bk+1−bk)=103+∑k=1n−143(23)kb_n = b_1 + \sum_{k=1}^{n-1} (b_{k+1} - b_k) = \frac{10}{3} + \sum_{k=1}^{n-1} \frac{4}{3}(\frac{2}{3})^kbn=b1+∑k=1n−1(bk+1−bk)=310+∑k=1n−134(32)k∑k=1n−143(23)k\sum_{k=1}^{n-1} \frac{4}{3}(\frac{2}{3})^k∑k=1n−134(32)k は初項 43⋅23=89\frac{4}{3} \cdot \frac{2}{3} = \frac{8}{9}34⋅32=98、公比 23\frac{2}{3}32、項数 n−1n-1n−1 の等比数列の和であるから、∑k=1n−143(23)k=89(1−(23)n−1)1−23=89(1−(23)n−1)13=83(1−(23)n−1)\sum_{k=1}^{n-1} \frac{4}{3}(\frac{2}{3})^k = \frac{\frac{8}{9}(1-(\frac{2}{3})^{n-1})}{1-\frac{2}{3}} = \frac{\frac{8}{9}(1-(\frac{2}{3})^{n-1})}{\frac{1}{3}} = \frac{8}{3}(1-(\frac{2}{3})^{n-1})∑k=1n−134(32)k=1−3298(1−(32)n−1)=3198(1−(32)n−1)=38(1−(32)n−1)よって、bn=103+83(1−(23)n−1)=103+83−83(23)n−1=183−83(23)n−1=6−83(23)n−1b_n = \frac{10}{3} + \frac{8}{3}(1-(\frac{2}{3})^{n-1}) = \frac{10}{3} + \frac{8}{3} - \frac{8}{3}(\frac{2}{3})^{n-1} = \frac{18}{3} - \frac{8}{3}(\frac{2}{3})^{n-1} = 6 - \frac{8}{3}(\frac{2}{3})^{n-1}bn=310+38(1−(32)n−1)=310+38−38(32)n−1=318−38(32)n−1=6−38(32)n−1したがって、an=3nbn=3n(6−83(23)n−1)=6⋅3n−8⋅3n−1(23)n−1=6⋅3n−8⋅2n−1=6⋅3n−2n+2a_n = 3^n b_n = 3^n (6 - \frac{8}{3}(\frac{2}{3})^{n-1}) = 6 \cdot 3^n - 8 \cdot 3^{n-1} (\frac{2}{3})^{n-1} = 6 \cdot 3^n - 8 \cdot 2^{n-1} = 6 \cdot 3^n - 2^{n+2}an=3nbn=3n(6−38(32)n−1)=6⋅3n−8⋅3n−1(32)n−1=6⋅3n−8⋅2n−1=6⋅3n−2n+2n=1n=1n=1 のとき、a1=6⋅31−21+2=18−8=10a_1 = 6 \cdot 3^1 - 2^{1+2} = 18 - 8 = 10a1=6⋅31−21+2=18−8=10 となり、成り立つ。3. 最終的な答えan=6⋅3n−2n+2a_n = 6 \cdot 3^n - 2^{n+2}an=6⋅3n−2n+2