次の式を計算する問題です。 $\frac{x+2}{x} - \frac{x+3}{x+1} - \frac{x-5}{x-3} + \frac{x-6}{x-4}$代数学分数式式の計算代数計算因数分解分数2025/6/301. 問題の内容次の式を計算する問題です。x+2x−x+3x+1−x−5x−3+x−6x−4\frac{x+2}{x} - \frac{x+3}{x+1} - \frac{x-5}{x-3} + \frac{x-6}{x-4}xx+2−x+1x+3−x−3x−5+x−4x−62. 解き方の手順まず、それぞれの分数式を以下のように変形します。x+2x=1+2x\frac{x+2}{x} = 1 + \frac{2}{x}xx+2=1+x2x+3x+1=1+2x+1\frac{x+3}{x+1} = 1 + \frac{2}{x+1}x+1x+3=1+x+12x−5x−3=1−2x−3\frac{x-5}{x-3} = 1 - \frac{2}{x-3}x−3x−5=1−x−32x−6x−4=1−2x−4\frac{x-6}{x-4} = 1 - \frac{2}{x-4}x−4x−6=1−x−42与式に代入すると、(1+2x)−(1+2x+1)−(1−2x−3)+(1−2x−4)(1 + \frac{2}{x}) - (1 + \frac{2}{x+1}) - (1 - \frac{2}{x-3}) + (1 - \frac{2}{x-4})(1+x2)−(1+x+12)−(1−x−32)+(1−x−42)=1+2x−1−2x+1−1+2x−3+1−2x−4= 1 + \frac{2}{x} - 1 - \frac{2}{x+1} - 1 + \frac{2}{x-3} + 1 - \frac{2}{x-4}=1+x2−1−x+12−1+x−32+1−x−42=2x−2x+1+2x−3−2x−4= \frac{2}{x} - \frac{2}{x+1} + \frac{2}{x-3} - \frac{2}{x-4}=x2−x+12+x−32−x−42=2(1x−1x+1+1x−3−1x−4)= 2(\frac{1}{x} - \frac{1}{x+1} + \frac{1}{x-3} - \frac{1}{x-4})=2(x1−x+11+x−31−x−41)=2(x+1−xx(x+1)+x−4−(x−3)(x−3)(x−4))= 2(\frac{x+1-x}{x(x+1)} + \frac{x-4-(x-3)}{(x-3)(x-4)})=2(x(x+1)x+1−x+(x−3)(x−4)x−4−(x−3))=2(1x(x+1)+−1(x−3)(x−4))= 2(\frac{1}{x(x+1)} + \frac{-1}{(x-3)(x-4)})=2(x(x+1)1+(x−3)(x−4)−1)=2(1x2+x−1x2−7x+12)= 2(\frac{1}{x^2+x} - \frac{1}{x^2-7x+12})=2(x2+x1−x2−7x+121)=2(x2−7x+12−(x2+x)(x2+x)(x2−7x+12))= 2(\frac{x^2-7x+12-(x^2+x)}{(x^2+x)(x^2-7x+12)})=2((x2+x)(x2−7x+12)x2−7x+12−(x2+x))=2(x2−7x+12−x2−x(x2+x)(x2−7x+12))= 2(\frac{x^2-7x+12-x^2-x}{(x^2+x)(x^2-7x+12)})=2((x2+x)(x2−7x+12)x2−7x+12−x2−x)=2(−8x+12(x2+x)(x2−7x+12))= 2(\frac{-8x+12}{(x^2+x)(x^2-7x+12)})=2((x2+x)(x2−7x+12)−8x+12)=2(−8x+12)x4−7x3+12x2+x3−7x2+12x= \frac{2(-8x+12)}{x^4 - 7x^3 + 12x^2 + x^3 - 7x^2 + 12x}=x4−7x3+12x2+x3−7x2+12x2(−8x+12)=−16x+24x4−6x3+5x2+12x= \frac{-16x+24}{x^4 - 6x^3 + 5x^2 + 12x}=x4−6x3+5x2+12x−16x+24=−16x+24x(x3−6x2+5x+12)= \frac{-16x+24}{x(x^3 - 6x^2 + 5x + 12)}=x(x3−6x2+5x+12)−16x+243. 最終的な答え−16x+24x4−6x3+5x2+12x\frac{-16x+24}{x^4-6x^3+5x^2+12x}x4−6x3+5x2+12x−16x+24または−16x+24x(x3−6x2+5x+12)\frac{-16x+24}{x(x^3-6x^2+5x+12)}x(x3−6x2+5x+12)−16x+24あるいは8(3−2x)x(x3−6x2+5x+12)\frac{8(3-2x)}{x(x^3-6x^2+5x+12)}x(x3−6x2+5x+12)8(3−2x)