半径 $r$ の円 $x^2 + y^2 = r^2$ と直線 $3x + y - 10 = 0$ が接するとき、$r$ の値を求める。

幾何学直線接する距離半径
2025/6/30

1. 問題の内容

半径 rr の円 x2+y2=r2x^2 + y^2 = r^2 と直線 3x+y10=03x + y - 10 = 0 が接するとき、rr の値を求める。

2. 解き方の手順

円と直線が接するということは、円の中心と直線の距離が半径に等しいということです。
x2+y2=r2x^2 + y^2 = r^2 の中心は (0,0)(0, 0) です。点 (x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 の距離 dd は、次の公式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題の場合、x0=0x_0 = 0, y0=0y_0 = 0, a=3a = 3, b=1b = 1, c=10c = -10 です。
したがって、円の中心 (0,0)(0, 0) と直線 3x+y10=03x + y - 10 = 0 の距離 dd は、
d=3(0)+1(0)1032+12=109+1=1010=10d = \frac{|3(0) + 1(0) - 10|}{\sqrt{3^2 + 1^2}} = \frac{|-10|}{\sqrt{9 + 1}} = \frac{10}{\sqrt{10}} = \sqrt{10}
円と直線が接するとき、d=rd = r なので、
r=10r = \sqrt{10}

3. 最終的な答え

r=10r = \sqrt{10}

「幾何学」の関連問題

三角形ABCにおいて、$b=2$, $c=\sqrt{6}+\sqrt{2}$, $A=45^\circ$ のとき、残りの辺の長さ$a$と角$B$, $C$の大きさを求める問題です。

三角比余弦定理正弦定理三角形
2025/6/30

与えられた式を簡略化する問題です。式は $\tan \theta + \frac{1}{\tan \theta}$ です。

三角関数恒等式倍角の公式簡略化
2025/6/30

正四面体の一つの面を底面にして固定し、一つの辺を軸として3回回転させます。ただし、2回目以降は、直前にあった場所を通らないようにします。このとき、 (1) 転がし方の総数 (2) 3回回転させた後の正...

正四面体空間図形回転場合の数対称性
2025/6/30

正四面体の1つの面を下にして置き、1つの辺を軸として3回回転させます。ただし、2回目以降は直前にあった場所を通らないようにします。このとき、 (1) 転がし方の総数 (2) 3回回転がした後の正四面体...

正四面体回転空間図形場合の数
2025/6/30

点A(1, 3)から円 $x^2 + y^2 = 5$ に引いた接線の方程式と接点の座標を求めよ。

接線座標方程式
2025/6/30

与えられた各直角三角形において、指定された三角比の値を求める問題です。 (1) $\triangle ABC$ において、$\sin A$, $\cos A$, $\sin B$, $\tan B$ ...

三角比直角三角形ピタゴラスの定理
2025/6/30

問題は2つあります。 (1) 三角形ABCにおいて、BC = 200m, ∠ABC = 60°, ∠ACB = 75°のとき、ACの長さを求めよ。 (2) 三角形ABCの3辺の長さが与えられたとき、∠...

三角形正弦定理余弦定理角度辺の長さ
2025/6/30

2点 $A(2, 0, -3)$ と $B(-2, 6, 1)$ を直径の両端とする球面の式を求める問題です。

球面空間ベクトル距離方程式
2025/6/30

与えられた三角関数を含む等式を満たす角度 $\theta$ を、 $0^\circ \le \theta \le 180^\circ$ の範囲で求める問題です。具体的には、 (1) $\cos \th...

三角関数角度三角比方程式
2025/6/30

与えられた三角比の式の値を計算する問題です。具体的には、以下の3つの式を計算します。 (1) $\cos^2 44^\circ + \cos^2 45^\circ + \cos^2 46^\circ$...

三角比三角関数計算
2025/6/30