$\sum_{k=5}^{a} 2 = 100$ を満たす $a$ の値を求める問題です。

代数学シグマ数列方程式計算
2025/6/30

1. 問題の内容

k=5a2=100\sum_{k=5}^{a} 2 = 100 を満たす aa の値を求める問題です。

2. 解き方の手順

シグマの記号は、指定された範囲の値を足し合わせることを意味します。今回の問題では、kk が5から aa までの整数を動くとき、常に2を足し合わせます。
したがって、
k=5a2=2+2++2\sum_{k=5}^{a} 2 = 2 + 2 + \dots + 2
となります。2を足す回数は、a5+1=a4a - 5 + 1 = a - 4 回です。
よって、
2(a4)=1002(a - 4) = 100
という式が成り立ちます。この式を aa について解きます。
2(a4)=1002(a - 4) = 100
a4=50a - 4 = 50
a=54a = 54

3. 最終的な答え

a=54a = 54

「代数学」の関連問題

与えられた数式をそれぞれ展開し、計算して簡単にします。

式の展開平方根計算
2025/7/1

与えられた4つの二次関数について、グラフをかき、軸と頂点を求める問題です。 (1) $y = x^2 - 4x + 3$ (2) $y = 2x^2 + 8x + 3$ (3) $y = -3x^2 ...

二次関数平方完成グラフ頂点
2025/7/1

2次方程式 $x^2 - 3x + k + 1 = 0$ が2つの複素数解を持つような $k$ の範囲を求める問題です。

二次方程式判別式複素数解不等式
2025/7/1

次の連立不等式を解く問題です。 $\begin{cases} x^2 - 2x - 3 \le 0 \\ x^2 - 2x > 0 \end{cases}$

連立不等式二次不等式因数分解
2025/7/1

問題11:ある等差数列の初項から第$n$項までの和を$S_n$とする。$S_{10} = 200$、$S_{20} = 600$のとき、以下の値を求める。 (1) $S_n$の式を求める。 (2) $...

数列等差数列最大値
2025/7/1

与えられた連立不等式 $\begin{cases} 3x + 3 \geq 2x - 1 \\ 2x < 1 - x \\ x \leq 4x + 3 \end{cases}$ を解く。

不等式連立不等式数直線
2025/7/1

与えられた2つの連立不等式をそれぞれ解く問題です。 (1) $ \begin{cases} 3x+3 \geq 2x-1 \\ 2x < 1-x \\ x \leq 4x+3 \end{cases} ...

連立不等式不等式二次不等式因数分解
2025/7/1

問題は2つあります。 一つ目は、不等式 $\frac{(2x^2 + 2) + (x^2 - x + 1)}{2} > \sqrt{(2x^2+2)(x^2 - x + 1)}$ が実数 $x$ に対...

不等式相加相乗平均最小値二次方程式判別式
2025/7/1

横と縦の長さの和が12cmである長方形において、面積が27 $cm^2$以上となるような横の長さ $x$ の範囲を求める問題です。

不等式二次不等式長方形の面積範囲
2025/7/1

与えられた4つの不等式を解く問題です。 (1) $3x - 1 < 5x + 4$ (2) $\frac{2-x}{3} \geq \frac{5+3x}{2}$ (3) $x^2 > 4$ (4) ...

不等式一次不等式二次不等式因数分解
2025/7/1