次の和を求めよ。 $1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 + \dots + n(2n-1)$代数学数列シグマ和の公式2025/7/11. 問題の内容次の和を求めよ。1⋅1+2⋅3+3⋅5+⋯+n(2n−1)1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 + \dots + n(2n-1)1⋅1+2⋅3+3⋅5+⋯+n(2n−1)2. 解き方の手順与えられた数列の一般項は k(2k−1)k(2k-1)k(2k−1) と表せる。よって、求める和は∑k=1nk(2k−1)\sum_{k=1}^n k(2k-1)∑k=1nk(2k−1)となる。これを計算する。∑k=1nk(2k−1)=∑k=1n(2k2−k)=2∑k=1nk2−∑k=1nk\sum_{k=1}^n k(2k-1) = \sum_{k=1}^n (2k^2 - k) = 2 \sum_{k=1}^n k^2 - \sum_{k=1}^n k∑k=1nk(2k−1)=∑k=1n(2k2−k)=2∑k=1nk2−∑k=1nk∑k=1nk=n(n+1)2\sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)よって、2∑k=1nk2−∑k=1nk=2⋅n(n+1)(2n+1)6−n(n+1)2=n(n+1)(2n+1)3−n(n+1)22 \sum_{k=1}^n k^2 - \sum_{k=1}^n k = 2 \cdot \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{3} - \frac{n(n+1)}{2}2∑k=1nk2−∑k=1nk=2⋅6n(n+1)(2n+1)−2n(n+1)=3n(n+1)(2n+1)−2n(n+1)=2n(n+1)(2n+1)−3n(n+1)6=n(n+1)(2(2n+1)−3)6=n(n+1)(4n+2−3)6=n(n+1)(4n−1)6= \frac{2n(n+1)(2n+1) - 3n(n+1)}{6} = \frac{n(n+1)(2(2n+1) - 3)}{6} = \frac{n(n+1)(4n+2-3)}{6} = \frac{n(n+1)(4n-1)}{6}=62n(n+1)(2n+1)−3n(n+1)=6n(n+1)(2(2n+1)−3)=6n(n+1)(4n+2−3)=6n(n+1)(4n−1)3. 最終的な答えn(n+1)(4n−1)6\frac{n(n+1)(4n-1)}{6}6n(n+1)(4n−1)