次の和 $S$ を求める問題です。 $S = 1^2 \cdot 1 + 2^2 \cdot 3 + 3^2 \cdot 5 + 4^2 \cdot 7 + \dots + n^2 (2n - 1)$代数学級数シグマ数列の和2025/7/11. 問題の内容次の和 SSS を求める問題です。S=12⋅1+22⋅3+32⋅5+42⋅7+⋯+n2(2n−1)S = 1^2 \cdot 1 + 2^2 \cdot 3 + 3^2 \cdot 5 + 4^2 \cdot 7 + \dots + n^2 (2n - 1)S=12⋅1+22⋅3+32⋅5+42⋅7+⋯+n2(2n−1)2. 解き方の手順まず、一般項を求めます。第kkk項は k2(2k−1)k^2(2k-1)k2(2k−1) と表せます。したがって、求める和は以下のようになります。S=∑k=1nk2(2k−1)=∑k=1n(2k3−k2)S = \sum_{k=1}^{n} k^2(2k-1) = \sum_{k=1}^{n} (2k^3 - k^2)S=∑k=1nk2(2k−1)=∑k=1n(2k3−k2)次に、和の性質を利用して、式を分解します。S=2∑k=1nk3−∑k=1nk2S = 2\sum_{k=1}^{n} k^3 - \sum_{k=1}^{n} k^2S=2∑k=1nk3−∑k=1nk2ここで、∑k=1nk3={n(n+1)2}2\sum_{k=1}^{n} k^3 = \left\{\frac{n(n+1)}{2}\right\}^2∑k=1nk3={2n(n+1)}2 および ∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) を利用します。S=2{n(n+1)2}2−n(n+1)(2n+1)6S = 2 \left\{\frac{n(n+1)}{2}\right\}^2 - \frac{n(n+1)(2n+1)}{6}S=2{2n(n+1)}2−6n(n+1)(2n+1)S=2⋅n2(n+1)24−n(n+1)(2n+1)6S = 2 \cdot \frac{n^2(n+1)^2}{4} - \frac{n(n+1)(2n+1)}{6}S=2⋅4n2(n+1)2−6n(n+1)(2n+1)S=n2(n+1)22−n(n+1)(2n+1)6S = \frac{n^2(n+1)^2}{2} - \frac{n(n+1)(2n+1)}{6}S=2n2(n+1)2−6n(n+1)(2n+1)S=3n2(n+1)2−n(n+1)(2n+1)6S = \frac{3n^2(n+1)^2 - n(n+1)(2n+1)}{6}S=63n2(n+1)2−n(n+1)(2n+1)S=n(n+1){3n(n+1)−(2n+1)}6S = \frac{n(n+1)\{3n(n+1) - (2n+1)\}}{6}S=6n(n+1){3n(n+1)−(2n+1)}S=n(n+1)(3n2+3n−2n−1)6S = \frac{n(n+1)(3n^2 + 3n - 2n - 1)}{6}S=6n(n+1)(3n2+3n−2n−1)S=n(n+1)(3n2+n−1)6S = \frac{n(n+1)(3n^2 + n - 1)}{6}S=6n(n+1)(3n2+n−1)3. 最終的な答えn(n+1)(3n2+n−1)6\frac{n(n+1)(3n^2+n-1)}{6}6n(n+1)(3n2+n−1)