We are asked to evaluate three integrals: i. $\int 3x^2 + \sqrt{x} \, dx$ ii. $\int_{1}^{2} \frac{1}{x} - \frac{1}{x^2} \, dx$ iii. $\int e^{2x-3} \, dx$

AnalysisIntegrationDefinite IntegralsIndefinite IntegralsPower RuleSubstitution
2025/3/31

1. Problem Description

We are asked to evaluate three integrals:
i. 3x2+xdx\int 3x^2 + \sqrt{x} \, dx
ii. 121x1x2dx\int_{1}^{2} \frac{1}{x} - \frac{1}{x^2} \, dx
iii. e2x3dx\int e^{2x-3} \, dx

2. Solution Steps

i.
We need to evaluate the indefinite integral 3x2+xdx\int 3x^2 + \sqrt{x} \, dx.
First, rewrite x\sqrt{x} as x1/2x^{1/2}.
3x2+x1/2dx=3x2dx+x1/2dx\int 3x^2 + x^{1/2} \, dx = \int 3x^2 \, dx + \int x^{1/2} \, dx
Using the power rule for integration, xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, we have:
3x2dx=3x2dx=3x33=x3\int 3x^2 \, dx = 3 \int x^2 \, dx = 3 \cdot \frac{x^3}{3} = x^3
x1/2dx=x1/2+11/2+1=x3/23/2=23x3/2\int x^{1/2} \, dx = \frac{x^{1/2 + 1}}{1/2 + 1} = \frac{x^{3/2}}{3/2} = \frac{2}{3}x^{3/2}
Therefore, 3x2+xdx=x3+23x3/2+C\int 3x^2 + \sqrt{x} \, dx = x^3 + \frac{2}{3}x^{3/2} + C.
ii.
We need to evaluate the definite integral 121x1x2dx\int_{1}^{2} \frac{1}{x} - \frac{1}{x^2} \, dx.
121x1x2dx=121xdx121x2dx\int_{1}^{2} \frac{1}{x} - \frac{1}{x^2} \, dx = \int_{1}^{2} \frac{1}{x} \, dx - \int_{1}^{2} \frac{1}{x^2} \, dx
We know that 1xdx=lnx+C\int \frac{1}{x} \, dx = \ln|x| + C.
Also, 1x2dx=x2dx=x11=1x+C\int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = \frac{x^{-1}}{-1} = -\frac{1}{x} + C.
Therefore, 121x1x2dx=[lnx+1x]12=(ln(2)+12)(ln(1)+11)\int_{1}^{2} \frac{1}{x} - \frac{1}{x^2} \, dx = [\ln|x| + \frac{1}{x}]_{1}^{2} = (\ln(2) + \frac{1}{2}) - (\ln(1) + \frac{1}{1})
Since ln(1)=0\ln(1) = 0, we have ln(2)+121=ln(2)12\ln(2) + \frac{1}{2} - 1 = \ln(2) - \frac{1}{2}.
iii.
We need to evaluate the indefinite integral e2x3dx\int e^{2x-3} \, dx.
Let u=2x3u = 2x - 3. Then dudx=2\frac{du}{dx} = 2, so dx=12dudx = \frac{1}{2}du.
Then e2x3dx=eu12du=12eudu=12eu+C=12e2x3+C\int e^{2x-3} \, dx = \int e^u \cdot \frac{1}{2} \, du = \frac{1}{2} \int e^u \, du = \frac{1}{2}e^u + C = \frac{1}{2}e^{2x-3} + C.

3. Final Answer

i. x3+23x3/2+Cx^3 + \frac{2}{3}x^{3/2} + C
ii. ln(2)12\ln(2) - \frac{1}{2}
iii. 12e2x3+C\frac{1}{2}e^{2x-3} + C

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1