We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = 2 \tan x \sec x$ ii. $\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \sec \theta$

TrigonometryTrigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

1. Problem Description

We are asked to prove two trigonometric identities.
i. 11sinx11+sinx=2tanxsecx\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = 2 \tan x \sec x
ii. sin2θsinθcos2θcosθ=secθ\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \sec \theta

2. Solution Steps

i. To prove 11sinx11+sinx=2tanxsecx\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = 2 \tan x \sec x, we start with the left-hand side.
11sinx11+sinx=(1+sinx)(1sinx)(1sinx)(1+sinx)=1+sinx1+sinx1sin2x=2sinxcos2x\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = \frac{(1 + \sin x) - (1 - \sin x)}{(1 - \sin x)(1 + \sin x)} = \frac{1 + \sin x - 1 + \sin x}{1 - \sin^2 x} = \frac{2 \sin x}{\cos^2 x}
Using the identities tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} and secx=1cosx\sec x = \frac{1}{\cos x}, we can rewrite the expression as:
2sinxcos2x=2sinxcosx1cosx=2tanxsecx\frac{2 \sin x}{\cos^2 x} = 2 \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} = 2 \tan x \sec x.
Thus, we have shown that the left-hand side equals the right-hand side, proving the identity.
ii. To verify sin2θsinθcos2θcosθ=secθ\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \sec \theta, we start with the left-hand side.
Using the double angle formulas:
sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta
cos2θ=cos2θsin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta
So,
sin2θsinθcos2θcosθ=2sinθcosθsinθcos2θsin2θcosθ=2cosθcos2θcosθ+sin2θcosθ=2cosθcosθ+sin2θcosθ=cosθ+sin2θcosθ\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \frac{2 \sin \theta \cos \theta}{\sin \theta} - \frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta} = 2 \cos \theta - \frac{\cos^2 \theta}{\cos \theta} + \frac{\sin^2 \theta}{\cos \theta} = 2 \cos \theta - \cos \theta + \frac{\sin^2 \theta}{\cos \theta} = \cos \theta + \frac{\sin^2 \theta}{\cos \theta}
=cos2θ+sin2θcosθ=1cosθ=secθ= \frac{\cos^2 \theta + \sin^2 \theta}{\cos \theta} = \frac{1}{\cos \theta} = \sec \theta.
Thus, we have shown that the left-hand side equals the right-hand side, verifying the identity.

3. Final Answer

i. 11sinx11+sinx=2tanxsecx\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = 2 \tan x \sec x
ii. sin2θsinθcos2θcosθ=secθ\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \sec \theta

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find t...

TrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19