i. To prove 1−sinx1−1+sinx1=2tanxsecx, we start with the left-hand side. 1−sinx1−1+sinx1=(1−sinx)(1+sinx)(1+sinx)−(1−sinx)=1−sin2x1+sinx−1+sinx=cos2x2sinx Using the identities tanx=cosxsinx and secx=cosx1, we can rewrite the expression as: cos2x2sinx=2⋅cosxsinx⋅cosx1=2tanxsecx. Thus, we have shown that the left-hand side equals the right-hand side, proving the identity.
ii. To verify sinθsin2θ−cosθcos2θ=secθ, we start with the left-hand side. Using the double angle formulas:
sin2θ=2sinθcosθ cos2θ=cos2θ−sin2θ So,
sinθsin2θ−cosθcos2θ=sinθ2sinθcosθ−cosθcos2θ−sin2θ=2cosθ−cosθcos2θ+cosθsin2θ=2cosθ−cosθ+cosθsin2θ=cosθ+cosθsin2θ =cosθcos2θ+sin2θ=cosθ1=secθ. Thus, we have shown that the left-hand side equals the right-hand side, verifying the identity.