The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

1. Problem Description

The problem asks to simplify the trigonometric expression sin7x+sinx2sin2xcos3x\sin 7x + \sin x - 2\sin 2x \cos 3x.

2. Solution Steps

We can use the sum-to-product formula for sinA+sinB\sin A + \sin B, which is:
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
Applying this formula to sin7x+sinx\sin 7x + \sin x, we have:
sin7x+sinx=2sin(7x+x2)cos(7xx2)=2sin(8x2)cos(6x2)=2sin4xcos3x\sin 7x + \sin x = 2 \sin\left(\frac{7x+x}{2}\right) \cos\left(\frac{7x-x}{2}\right) = 2 \sin\left(\frac{8x}{2}\right) \cos\left(\frac{6x}{2}\right) = 2 \sin 4x \cos 3x
Thus, the given expression becomes:
2sin4xcos3x2sin2xcos3x2 \sin 4x \cos 3x - 2 \sin 2x \cos 3x
We can factor out 2cos3x2\cos 3x:
2cos3x(sin4xsin2x)2 \cos 3x (\sin 4x - \sin 2x)
Now we use the sum-to-product formula for sinAsinB\sin A - \sin B:
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)
Applying this formula to sin4xsin2x\sin 4x - \sin 2x, we have:
sin4xsin2x=2cos(4x+2x2)sin(4x2x2)=2cos(6x2)sin(2x2)=2cos3xsinx\sin 4x - \sin 2x = 2 \cos\left(\frac{4x+2x}{2}\right) \sin\left(\frac{4x-2x}{2}\right) = 2 \cos\left(\frac{6x}{2}\right) \sin\left(\frac{2x}{2}\right) = 2 \cos 3x \sin x
Substituting this back into our expression:
2cos3x(2cos3xsinx)=4cos23xsinx2 \cos 3x (2 \cos 3x \sin x) = 4 \cos^2 3x \sin x

3. Final Answer

The simplified expression is 4cos23xsinx4 \cos^2 3x \sin x. Therefore, the answer is option c.

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find t...

TrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19