We can use the sum-to-product formula for sinA+sinB, which is: sinA+sinB=2sin(2A+B)cos(2A−B) Applying this formula to sin7x+sinx, we have: sin7x+sinx=2sin(27x+x)cos(27x−x)=2sin(28x)cos(26x)=2sin4xcos3x Thus, the given expression becomes:
2sin4xcos3x−2sin2xcos3x We can factor out 2cos3x: 2cos3x(sin4x−sin2x) Now we use the sum-to-product formula for sinA−sinB: sinA−sinB=2cos(2A+B)sin(2A−B) Applying this formula to sin4x−sin2x, we have: sin4x−sin2x=2cos(24x+2x)sin(24x−2x)=2cos(26x)sin(22x)=2cos3xsinx Substituting this back into our expression:
2cos3x(2cos3xsinx)=4cos23xsinx