The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on the trigonometric circle, corresponding to the real numbers $\frac{\pi}{4}$, $-\frac{\pi}{3}$, $\frac{5\pi}{6}$, $\frac{2\pi}{3}$, $-\frac{3\pi}{4}$, $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\pi$, $\frac{\pi}{2}$, and $0$ respectively. b) Deduce in a table the sine and cosine values of $0$, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, and $\pi$. c) Let $m \in \mathbb{R}$. For which value of $m$ does there exist an angle $x$ such that $\sin x = -2m + 3$? d) Given $\cos(\frac{7\pi}{8}) = -\frac{\sqrt{2+\sqrt{2}}}{2}$, calculate $\cos(\frac{\pi}{8})$ and $\sin(\frac{3\pi}{8})$. e) Simplify the expressions for $A$, $B$, and $C$, where: $A = \cos(-x) + \sin(-x) + \sin(\pi - x) + \cos(\pi - x)$ $B = \sin(x) + \sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x) - \cos(x - \frac{\pi}{2})$ $C = \cos(\frac{\pi}{10}) + \cos(\frac{9\pi}{10}) + \cos(\frac{6\pi}{10}) + \cos(\frac{4\pi}{10})$

TrigonometryTrigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

1. Problem Description

The problem consists of five sub-problems:
a) Place the points A, B, C, D, E, F, G, H, J, and I on the trigonometric circle, corresponding to the real numbers π4\frac{\pi}{4}, π3-\frac{\pi}{3}, 5π6\frac{5\pi}{6}, 2π3\frac{2\pi}{3}, 3π4-\frac{3\pi}{4}, π6\frac{\pi}{6}, π3\frac{\pi}{3}, π\pi, π2\frac{\pi}{2}, and 00 respectively.
b) Deduce in a table the sine and cosine values of 00, π6\frac{\pi}{6}, π4\frac{\pi}{4}, π3\frac{\pi}{3}, π2\frac{\pi}{2}, and π\pi.
c) Let mRm \in \mathbb{R}. For which value of mm does there exist an angle xx such that sinx=2m+3\sin x = -2m + 3?
d) Given cos(7π8)=2+22\cos(\frac{7\pi}{8}) = -\frac{\sqrt{2+\sqrt{2}}}{2}, calculate cos(π8)\cos(\frac{\pi}{8}) and sin(3π8)\sin(\frac{3\pi}{8}).
e) Simplify the expressions for AA, BB, and CC, where:
A=cos(x)+sin(x)+sin(πx)+cos(πx)A = \cos(-x) + \sin(-x) + \sin(\pi - x) + \cos(\pi - x)
B=sin(x)+sin(π2x)+cos(π2x)cos(xπ2)B = \sin(x) + \sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x) - \cos(x - \frac{\pi}{2})
C=cos(π10)+cos(9π10)+cos(6π10)+cos(4π10)C = \cos(\frac{\pi}{10}) + \cos(\frac{9\pi}{10}) + \cos(\frac{6\pi}{10}) + \cos(\frac{4\pi}{10})

2. Solution Steps

a) Placing the points on the trigonometric circle is a visual task that cannot be performed here. The angles must be converted to degrees to accurately place each point.
b) We can calculate the sine and cosine values for the given angles:
cos(0)=1,sin(0)=0\cos(0) = 1, \sin(0) = 0
cos(π6)=32,sin(π6)=12\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}, \sin(\frac{\pi}{6}) = \frac{1}{2}
cos(π4)=22,sin(π4)=22\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}
cos(π3)=12,sin(π3)=32\cos(\frac{\pi}{3}) = \frac{1}{2}, \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}
cos(π2)=0,sin(π2)=1\cos(\frac{\pi}{2}) = 0, \sin(\frac{\pi}{2}) = 1
cos(π)=1,sin(π)=0\cos(\pi) = -1, \sin(\pi) = 0
c) Since 1sinx1-1 \le \sin x \le 1, we have 12m+31-1 \le -2m + 3 \le 1.
Subtracting 3 from all sides: 42m2-4 \le -2m \le -2.
Dividing by -2 and reversing the inequalities: 1m21 \le m \le 2.
Thus, for any mm in the interval [1,2][1, 2], there exists an angle xx such that sinx=2m+3\sin x = -2m + 3. The question asks for what value of m will there exist a solution. We need the range where -2m+3 is in [-1,1] or -1<=-2m+3<=1 or -4<=-2m<=-

2. Dividing everything by -2 and switching the signs, 1<=m<=

2. Any m in this interval will have a solution for x. We want one value, and any value in this interval will do. Let's choose the midpoint: $m = \frac{1+2}{2} = \frac{3}{2}$.

d) We are given cos(7π8)=2+22\cos(\frac{7\pi}{8}) = -\frac{\sqrt{2+\sqrt{2}}}{2}.
We want to find cos(π8)\cos(\frac{\pi}{8}) and sin(3π8)\sin(\frac{3\pi}{8}).
Using the half-angle formula, cos(x2)=±1+cos(x)2\cos(\frac{x}{2}) = \pm\sqrt{\frac{1+\cos(x)}{2}}.
cos(π8)=cos(π/42)=1+cos(π4)2=1+222=2+24=2+22\cos(\frac{\pi}{8}) = \cos(\frac{\pi/4}{2}) = \sqrt{\frac{1+\cos(\frac{\pi}{4})}{2}} = \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}. Since π8\frac{\pi}{8} is in the first quadrant, the cosine is positive.
sin(3π8)=cos(π23π8)=cos(4π83π8)=cos(π8)=2+22\sin(\frac{3\pi}{8}) = \cos(\frac{\pi}{2} - \frac{3\pi}{8}) = \cos(\frac{4\pi}{8} - \frac{3\pi}{8}) = \cos(\frac{\pi}{8}) = \frac{\sqrt{2+\sqrt{2}}}{2}.
e) Simplifying the expressions:
A=cos(x)+sin(x)+sin(πx)+cos(πx)=cos(x)sin(x)+sin(x)cos(x)=0A = \cos(-x) + \sin(-x) + \sin(\pi - x) + \cos(\pi - x) = \cos(x) - \sin(x) + \sin(x) - \cos(x) = 0.
B=sin(x)+sin(π2x)+cos(π2x)cos(xπ2)=sin(x)+cos(x)+sin(x)sin(x)=sin(x)+cos(x)B = \sin(x) + \sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x) - \cos(x - \frac{\pi}{2}) = \sin(x) + \cos(x) + \sin(x) - \sin(x) = \sin(x) + \cos(x).
C=cos(π10)+cos(9π10)+cos(6π10)+cos(4π10)=cos(π10)+cos(ππ10)+cos(3π5)+cos(2π5)=cos(π10)cos(π10)+cos(3π5)+cos(2π5)=cos(3π5)+cos(2π5)C = \cos(\frac{\pi}{10}) + \cos(\frac{9\pi}{10}) + \cos(\frac{6\pi}{10}) + \cos(\frac{4\pi}{10}) = \cos(\frac{\pi}{10}) + \cos(\pi - \frac{\pi}{10}) + \cos(\frac{3\pi}{5}) + \cos(\frac{2\pi}{5}) = \cos(\frac{\pi}{10}) - \cos(\frac{\pi}{10}) + \cos(\frac{3\pi}{5}) + \cos(\frac{2\pi}{5}) = \cos(\frac{3\pi}{5}) + \cos(\frac{2\pi}{5}).
C=cos(3π5)+cos(2π5)=cos(108)+cos(72)=sin(18)+sin(18+36)=514+5+14=24=12C = \cos(\frac{3\pi}{5}) + \cos(\frac{2\pi}{5}) = \cos(108^\circ) + \cos(72^\circ) = -\sin(18^\circ) + \sin(18^\circ + 36^\circ) = -\frac{\sqrt{5}-1}{4} + \frac{\sqrt{5}+1}{4} = \frac{2}{4} = \frac{1}{2}

3. Final Answer

a) Not possible to provide exact positions without a graphical tool.
b)
| Angle | 00 | π6\frac{\pi}{6} | π4\frac{\pi}{4} | π3\frac{\pi}{3} | π2\frac{\pi}{2} | π\pi |
|-----------|-----|-----------------|-----------------|-----------------|-----------------|-------|
| Sine | 00 | 12\frac{1}{2} | 22\frac{\sqrt{2}}{2} | 32\frac{\sqrt{3}}{2} | 11 | 00 |
| Cosine | 11 | 32\frac{\sqrt{3}}{2} | 22\frac{\sqrt{2}}{2} | 12\frac{1}{2} | 00 | 1-1 |
c) m=32m = \frac{3}{2} (or any value in [1,2][1, 2])
d) cos(π8)=2+22\cos(\frac{\pi}{8}) = \frac{\sqrt{2+\sqrt{2}}}{2}, sin(3π8)=2+22\sin(\frac{3\pi}{8}) = \frac{\sqrt{2+\sqrt{2}}}{2}
e) A=0A = 0, B=sin(x)+cos(x)B = \sin(x) + \cos(x), C=12C = \frac{1}{2}

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find t...

TrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19