We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find the value of $\sin \alpha$.

TrigonometryTrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19

1. Problem Description

We are given that cos(π+α)=35\cos(\pi + \alpha) = \frac{3}{5} and α(π,2π)\alpha \in (\pi, 2\pi). We want to find the value of sinα\sin \alpha.

2. Solution Steps

We know that
cos(π+α)=cosπcosαsinπsinα\cos(\pi + \alpha) = \cos \pi \cos \alpha - \sin \pi \sin \alpha
Since cosπ=1\cos \pi = -1 and sinπ=0\sin \pi = 0, we have
cos(π+α)=cosα\cos(\pi + \alpha) = -\cos \alpha
We are given that cos(π+α)=35\cos(\pi + \alpha) = \frac{3}{5}, so
cosα=35-\cos \alpha = \frac{3}{5}
cosα=35\cos \alpha = -\frac{3}{5}
We also know the trigonometric identity:
sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1
Substituting cosα=35\cos \alpha = -\frac{3}{5}, we get
sin2α+(35)2=1\sin^2 \alpha + \left(-\frac{3}{5}\right)^2 = 1
sin2α+925=1\sin^2 \alpha + \frac{9}{25} = 1
sin2α=1925=25925=1625\sin^2 \alpha = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25}
sinα=±1625=±45\sin \alpha = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}
Since α(π,2π)\alpha \in (\pi, 2\pi), α\alpha is in the third or fourth quadrant. In the third quadrant, sinα<0\sin \alpha < 0 and in the fourth quadrant sinα<0\sin \alpha < 0. Therefore, sinα\sin \alpha must be negative.
sinα=45\sin \alpha = -\frac{4}{5}

3. Final Answer

45-\frac{4}{5}

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19