We start with the left-hand side (LHS) of the equation and manipulate it to obtain the right-hand side (RHS).
We know that a3+b3=(a+b)(a2−ab+b2). Let a=sin2x and b=cos2x. Then, a3+b3=sin6x+cos6x. So we have:
sin6x+cos6x=(sin2x+cos2x)((sin2x)2−sin2xcos2x+(cos2x)2). We know that sin2x+cos2x=1. Therefore,
sin6x+cos6x=1⋅(sin4x−sin2xcos2x+cos4x). sin6x+cos6x=sin4x−sin2xcos2x+cos4x. Now, we add and subtract 3sin2xcos2x: sin6x+cos6x=sin4x+2sin2xcos2x+cos4x−3sin2xcos2x. sin6x+cos6x=(sin2x+cos2x)2−3sin2xcos2x. Since sin2x+cos2x=1, sin6x+cos6x=(1)2−3sin2xcos2x. sin6x+cos6x=1−3sin2xcos2x.