Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

TrigonometryTrigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

1. Problem Description

Verify the trigonometric identity: sin6x+cos6x=13sin2xcos2x\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x.

2. Solution Steps

We start with the left-hand side (LHS) of the equation and manipulate it to obtain the right-hand side (RHS).
We know that a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2). Let a=sin2xa = \sin^2 x and b=cos2xb = \cos^2 x. Then, a3+b3=sin6x+cos6xa^3 + b^3 = \sin^6 x + \cos^6 x.
So we have:
sin6x+cos6x=(sin2x+cos2x)((sin2x)2sin2xcos2x+(cos2x)2)\sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2).
We know that sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.
Therefore,
sin6x+cos6x=1(sin4xsin2xcos2x+cos4x)\sin^6 x + \cos^6 x = 1 \cdot (\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x).
sin6x+cos6x=sin4xsin2xcos2x+cos4x\sin^6 x + \cos^6 x = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x.
Now, we add and subtract 3sin2xcos2x3\sin^2 x \cos^2 x:
sin6x+cos6x=sin4x+2sin2xcos2x+cos4x3sin2xcos2x\sin^6 x + \cos^6 x = \sin^4 x + 2\sin^2 x \cos^2 x + \cos^4 x - 3\sin^2 x \cos^2 x.
sin6x+cos6x=(sin2x+cos2x)23sin2xcos2x\sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)^2 - 3\sin^2 x \cos^2 x.
Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1,
sin6x+cos6x=(1)23sin2xcos2x\sin^6 x + \cos^6 x = (1)^2 - 3\sin^2 x \cos^2 x.
sin6x+cos6x=13sin2xcos2x\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x.

3. Final Answer

The identity is verified: sin6x+cos6x=13sin2xcos2x\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x.

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find t...

TrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19