We can use the sum-to-product formula for sin7x+sinx: sinA+sinB=2sin(2A+B)cos(2A−B) In our case, A=7x and B=x. Therefore, sin7x+sinx=2sin(27x+x)cos(27x−x)=2sin(28x)cos(26x)=2sin4xcos3x. Now, we substitute this back into the original expression:
sin7x+sinx−2sin2xcos3x=2sin4xcos3x−2sin2xcos3x We can factor out 2cos3x: 2cos3x(sin4x−sin2x). We can use the sum-to-product formula for sin4x−sin2x: sinA−sinB=2cos(2A+B)sin(2A−B) In our case, A=4x and B=2x. Therefore, sin4x−sin2x=2cos(24x+2x)sin(24x−2x)=2cos(26x)sin(22x)=2cos3xsinx. Now, substitute this back into the expression:
2cos3x(sin4x−sin2x)=2cos3x(2cos3xsinx)=4cos2(3x)sinx.