We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct simplified expression from the options given.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

1. Problem Description

We are asked to simplify the expression sin7x+sinx2sin2xcos3xsin7x + sinx - 2sin2xcos3x. We need to choose the correct simplified expression from the options given.

2. Solution Steps

We can use the sum-to-product formula for sin7x+sinxsin7x + sinx:
sinA+sinB=2sin(A+B2)cos(AB2)sinA + sinB = 2sin(\frac{A+B}{2})cos(\frac{A-B}{2})
In our case, A=7xA = 7x and B=xB = x. Therefore,
sin7x+sinx=2sin(7x+x2)cos(7xx2)=2sin(8x2)cos(6x2)=2sin4xcos3xsin7x + sinx = 2sin(\frac{7x+x}{2})cos(\frac{7x-x}{2}) = 2sin(\frac{8x}{2})cos(\frac{6x}{2}) = 2sin4xcos3x.
Now, we substitute this back into the original expression:
sin7x+sinx2sin2xcos3x=2sin4xcos3x2sin2xcos3xsin7x + sinx - 2sin2xcos3x = 2sin4xcos3x - 2sin2xcos3x
We can factor out 2cos3x2cos3x:
2cos3x(sin4xsin2x)2cos3x(sin4x - sin2x).
We can use the sum-to-product formula for sin4xsin2xsin4x - sin2x:
sinAsinB=2cos(A+B2)sin(AB2)sinA - sinB = 2cos(\frac{A+B}{2})sin(\frac{A-B}{2})
In our case, A=4xA = 4x and B=2xB = 2x. Therefore,
sin4xsin2x=2cos(4x+2x2)sin(4x2x2)=2cos(6x2)sin(2x2)=2cos3xsinxsin4x - sin2x = 2cos(\frac{4x+2x}{2})sin(\frac{4x-2x}{2}) = 2cos(\frac{6x}{2})sin(\frac{2x}{2}) = 2cos3xsinx.
Now, substitute this back into the expression:
2cos3x(sin4xsin2x)=2cos3x(2cos3xsinx)=4cos2(3x)sinx2cos3x(sin4x - sin2x) = 2cos3x(2cos3xsinx) = 4cos^2(3x)sinx.

3. Final Answer

The simplified expression is 4cos2(3x)sinx4cos^2(3x)sinx. Therefore, the correct answer is option c.

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find t...

TrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19