Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

1. Problem Description

Given tanα=5\tan \alpha = 5, find the value of sinαcosα\sin \alpha \cdot \cos \alpha.

2. Solution Steps

We are given tanα=5\tan \alpha = 5. We want to find the value of sinαcosα\sin \alpha \cdot \cos \alpha.
We know that tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}. Therefore, sinαcosα=5\frac{\sin \alpha}{\cos \alpha} = 5, which means sinα=5cosα\sin \alpha = 5 \cos \alpha.
We also know the Pythagorean identity:
sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1
Substitute sinα=5cosα\sin \alpha = 5 \cos \alpha into the identity:
(5cosα)2+cos2α=1(5 \cos \alpha)^2 + \cos^2 \alpha = 1
25cos2α+cos2α=125 \cos^2 \alpha + \cos^2 \alpha = 1
26cos2α=126 \cos^2 \alpha = 1
cos2α=126\cos^2 \alpha = \frac{1}{26}
So, cosα=±126\cos \alpha = \pm \frac{1}{\sqrt{26}}.
Then sinα=5cosα=±526\sin \alpha = 5 \cos \alpha = \pm \frac{5}{\sqrt{26}}.
Finally, sinαcosα=(±526)(±126)=526\sin \alpha \cdot \cos \alpha = (\pm \frac{5}{\sqrt{26}}) (\pm \frac{1}{\sqrt{26}}) = \frac{5}{26}.
Alternatively, we can express sinαcosα\sin \alpha \cdot \cos \alpha in terms of tanα\tan \alpha:
sinαcosα=sinαcosαcos2α=tanαcos2α\sin \alpha \cdot \cos \alpha = \frac{\sin \alpha}{\cos \alpha} \cdot \cos^2 \alpha = \tan \alpha \cdot \cos^2 \alpha
We also have
1+tan2α=1cos2α1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}
Thus,
cos2α=11+tan2α\cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha}
Then sinαcosα=tanαcos2α=tanα11+tan2α=tanα1+tan2α\sin \alpha \cdot \cos \alpha = \tan \alpha \cdot \cos^2 \alpha = \tan \alpha \cdot \frac{1}{1 + \tan^2 \alpha} = \frac{\tan \alpha}{1 + \tan^2 \alpha}
Since tanα=5\tan \alpha = 5, sinαcosα=51+52=51+25=526\sin \alpha \cdot \cos \alpha = \frac{5}{1 + 5^2} = \frac{5}{1 + 25} = \frac{5}{26}.

3. Final Answer

526\frac{5}{26}

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

We are given that $\cos(\pi + \alpha) = \frac{3}{5}$ and $\alpha \in (\pi, 2\pi)$. We want to find t...

TrigonometryTrigonometric IdentitiesUnit CircleSineCosineQuadrant Analysis
2025/3/19