The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

TrigonometryTrigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

1. Problem Description

The problem is to verify the identity:
sin6x+cos6x=13sin2xcos2xsin^6x + cos^6x = 1 - 3sin^2xcos^2x

2. Solution Steps

We start from the left-hand side (LHS) and try to derive the right-hand side (RHS).
Recall the identity:
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
We can rewrite the LHS as:
sin6x+cos6x=(sin2x)3+(cos2x)3sin^6x + cos^6x = (sin^2x)^3 + (cos^2x)^3
Let a=sin2xa = sin^2x and b=cos2xb = cos^2x. Then, a+b=sin2x+cos2x=1a+b = sin^2x + cos^2x = 1.
Using the identity, we have:
(sin2x)3+(cos2x)3=(sin2x+cos2x)((sin2x)2sin2xcos2x+(cos2x)2)(sin^2x)^3 + (cos^2x)^3 = (sin^2x + cos^2x)((sin^2x)^2 - sin^2xcos^2x + (cos^2x)^2)
Since sin2x+cos2x=1sin^2x + cos^2x = 1, we have:
(sin2x)3+(cos2x)3=(sin4xsin2xcos2x+cos4x)(sin^2x)^3 + (cos^2x)^3 = (sin^4x - sin^2xcos^2x + cos^4x)
Now, we can rewrite sin4x+cos4xsin^4x + cos^4x as follows:
sin4x+cos4x=(sin2x+cos2x)22sin2xcos2xsin^4x + cos^4x = (sin^2x + cos^2x)^2 - 2sin^2xcos^2x
Since sin2x+cos2x=1sin^2x + cos^2x = 1,
sin4x+cos4x=12sin2xcos2xsin^4x + cos^4x = 1 - 2sin^2xcos^2x
Therefore,
sin4xsin2xcos2x+cos4x=(12sin2xcos2x)sin2xcos2x=13sin2xcos2xsin^4x - sin^2xcos^2x + cos^4x = (1 - 2sin^2xcos^2x) - sin^2xcos^2x = 1 - 3sin^2xcos^2x
Hence, sin6x+cos6x=13sin2xcos2xsin^6x + cos^6x = 1 - 3sin^2xcos^2x

3. Final Answer

sin6x+cos6x=13sin2xcos2xsin^6x + cos^6x = 1 - 3sin^2xcos^2x

Related problems in "Trigonometry"

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14

The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\f...

Trigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14

The problem consists of two parts. 1. Prove that $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$. $x$...

Trigonometric IdentitiesTrigonometric SimplificationsincosAngle Addition/Subtraction FormulasDouble Angle Formulas
2025/4/14

Given that $x$ and $y$ are elements of $[0, \frac{\pi}{2}]$ such that $\sin x = \frac{\sqrt{6} + \sq...

Trigonometric IdentitiesInverse TrigonometryAngle Addition/Subtraction FormulasExact Values
2025/4/14