We start from the left-hand side (LHS) and try to derive the right-hand side (RHS).
Recall the identity:
a3+b3=(a+b)(a2−ab+b2) We can rewrite the LHS as:
sin6x+cos6x=(sin2x)3+(cos2x)3 Let a=sin2x and b=cos2x. Then, a+b=sin2x+cos2x=1. Using the identity, we have:
(sin2x)3+(cos2x)3=(sin2x+cos2x)((sin2x)2−sin2xcos2x+(cos2x)2) Since sin2x+cos2x=1, we have: (sin2x)3+(cos2x)3=(sin4x−sin2xcos2x+cos4x) Now, we can rewrite sin4x+cos4x as follows: sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x Since sin2x+cos2x=1, sin4x+cos4x=1−2sin2xcos2x Therefore,
sin4x−sin2xcos2x+cos4x=(1−2sin2xcos2x)−sin2xcos2x=1−3sin2xcos2x Hence, sin6x+cos6x=1−3sin2xcos2x