定積分 $\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx$ を計算します。解析学定積分絶対値三角関数積分2025/7/11. 問題の内容定積分 ∫02πsin∣x−π3∣dx\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx∫02πsin∣x−3π∣dx を計算します。2. 解き方の手順絶対値を外すために積分区間を分割します。x−π3=0x - \frac{\pi}{3} = 0x−3π=0 となるのは x=π3x = \frac{\pi}{3}x=3π です。したがって、0≤x≤π30 \le x \le \frac{\pi}{3}0≤x≤3π のとき ∣x−π3∣=π3−x|x - \frac{\pi}{3}| = \frac{\pi}{3} - x∣x−3π∣=3π−x であり、π3≤x≤2π\frac{\pi}{3} \le x \le 2\pi3π≤x≤2π のとき ∣x−π3∣=x−π3|x - \frac{\pi}{3}| = x - \frac{\pi}{3}∣x−3π∣=x−3π です。よって、積分は次のように分割できます。∫02πsin∣x−π3∣dx=∫0π3sin(π3−x)dx+∫π32πsin(x−π3)dx\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx + \int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx∫02πsin∣x−3π∣dx=∫03πsin(3π−x)dx+∫3π2πsin(x−3π)dxそれぞれの積分を計算します。∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos(0)−cos(π3)=1−12=12\int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx = \left[ \cos (\frac{\pi}{3} - x) \right]_{0}^{\frac{\pi}{3}} = \cos(0) - \cos(\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos(0)−cos(3π)=1−21=21∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(5π3)+cos(0)=−12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx = \left[ - \cos (x - \frac{\pi}{3}) \right]_{\frac{\pi}{3}}^{2\pi} = - \cos(\frac{5\pi}{3}) + \cos(0) = - \frac{1}{2} + 1 = \frac{1}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(35π)+cos(0)=−21+1=21したがって、∫02πsin∣x−π3∣dx=12+12+[−cos(x−π3)]π32π=1−cos(5π3)=32\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \frac{1}{2} + \frac{1}{2} + [- \cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = 1- cos(\frac{5\pi}{3}) = \frac{3}{2}∫02πsin∣x−3π∣dx=21+21+[−cos(x−3π)]3π2π=1−cos(35π)=23よって、∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(2π−π3)+cos(0)=−cos(5π3)+1=−12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3}) dx = [-cos(x-\frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -cos(2\pi - \frac{\pi}{3}) + cos(0) = -cos(\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{1}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(2π−3π)+cos(0)=−cos(35π)+1=−21+1=21∫02πsin∣x−π3∣dx=12+32=2\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \frac{1}{2} + \frac{3}{2} = 2∫02πsin∣x−3π∣dx=21+23=23. 最終的な答え2