定積分 $\int_{-x}^{x} (\sin t - pt)^2 dt$ を計算します。解析学定積分積分部分積分三角関数2025/7/11. 問題の内容定積分 ∫−xx(sint−pt)2dt\int_{-x}^{x} (\sin t - pt)^2 dt∫−xx(sint−pt)2dt を計算します。2. 解き方の手順まず、被積分関数を展開します。(sint−pt)2=sin2t−2ptsint+p2t2(\sin t - pt)^2 = \sin^2 t - 2pt \sin t + p^2 t^2(sint−pt)2=sin2t−2ptsint+p2t2次に、それぞれの項を積分します。∫−xxsin2t dt=∫−xx1−cos2t2 dt=[t2−sin2t4]−xx=x2−sin2x4−(−x2−sin(−2x)4)=x−sin2x2 \int_{-x}^{x} \sin^2 t \, dt = \int_{-x}^{x} \frac{1 - \cos 2t}{2} \, dt = \left[ \frac{t}{2} - \frac{\sin 2t}{4} \right]_{-x}^{x} = \frac{x}{2} - \frac{\sin 2x}{4} - \left( \frac{-x}{2} - \frac{\sin (-2x)}{4} \right) = x - \frac{\sin 2x}{2} ∫−xxsin2tdt=∫−xx21−cos2tdt=[2t−4sin2t]−xx=2x−4sin2x−(2−x−4sin(−2x))=x−2sin2x∫−xx−2ptsint dt=−2p∫−xxtsint dt \int_{-x}^{x} -2pt \sin t \, dt = -2p \int_{-x}^{x} t \sin t \, dt ∫−xx−2ptsintdt=−2p∫−xxtsintdtここで、部分積分を行います。u=t,dv=sint dtu = t, dv = \sin t \, dtu=t,dv=sintdt とすると、du=dt,v=−costdu = dt, v = -\cos tdu=dt,v=−cost となり、∫tsint dt=−tcost−∫(−cost) dt=−tcost+sint \int t \sin t \, dt = -t \cos t - \int (-\cos t) \, dt = -t \cos t + \sin t ∫tsintdt=−tcost−∫(−cost)dt=−tcost+sintしたがって、−2p∫−xxtsint dt=−2p[−tcost+sint]−xx=−2p((−xcosx+sinx)−(xcos(−x)+sin(−x)))=−2p(−xcosx+sinx−xcosx+sinx)=−2p(−2xcosx+2sinx)=4pxcosx−4psinx -2p \int_{-x}^{x} t \sin t \, dt = -2p \left[ -t \cos t + \sin t \right]_{-x}^{x} = -2p \left( (-x \cos x + \sin x) - (x \cos (-x) + \sin (-x)) \right) = -2p (-x \cos x + \sin x - x \cos x + \sin x) = -2p (-2x \cos x + 2 \sin x) = 4px \cos x - 4p \sin x −2p∫−xxtsintdt=−2p[−tcost+sint]−xx=−2p((−xcosx+sinx)−(xcos(−x)+sin(−x)))=−2p(−xcosx+sinx−xcosx+sinx)=−2p(−2xcosx+2sinx)=4pxcosx−4psinx∫−xxp2t2 dt=p2∫−xxt2 dt=p2[t33]−xx=p2(x33−(−x)33)=p2(x33+x33)=23p2x3 \int_{-x}^{x} p^2 t^2 \, dt = p^2 \int_{-x}^{x} t^2 \, dt = p^2 \left[ \frac{t^3}{3} \right]_{-x}^{x} = p^2 \left( \frac{x^3}{3} - \frac{(-x)^3}{3} \right) = p^2 \left( \frac{x^3}{3} + \frac{x^3}{3} \right) = \frac{2}{3} p^2 x^3 ∫−xxp2t2dt=p2∫−xxt2dt=p2[3t3]−xx=p2(3x3−3(−x)3)=p2(3x3+3x3)=32p2x3したがって、∫−xx(sint−pt)2dt=x−sin2x2+4pxcosx−4psinx+23p2x3=23p2x3+x−12sin2x+4pxcosx−4psinx \int_{-x}^{x} (\sin t - pt)^2 dt = x - \frac{\sin 2x}{2} + 4px \cos x - 4p \sin x + \frac{2}{3} p^2 x^3 = \frac{2}{3} p^2 x^3 + x - \frac{1}{2} \sin 2x + 4px \cos x - 4p \sin x ∫−xx(sint−pt)2dt=x−2sin2x+4pxcosx−4psinx+32p2x3=32p2x3+x−21sin2x+4pxcosx−4psinx3. 最終的な答え23p2x3+x−12sin2x+4pxcosx−4psinx\frac{2}{3} p^2 x^3 + x - \frac{1}{2} \sin 2x + 4px \cos x - 4p \sin x32p2x3+x−21sin2x+4pxcosx−4psinx