複素数 $w$ が中心 $-1$, 半径 $1$ の円周上を動くとき, $z = \frac{w+1}{w-1}$ はどのような図形を描くか。代数学複素数複素平面円軌跡2025/7/21. 問題の内容複素数 www が中心 −1-1−1, 半径 111 の円周上を動くとき, z=w+1w−1z = \frac{w+1}{w-1}z=w−1w+1 はどのような図形を描くか。2. 解き方の手順www が中心 −1-1−1, 半径 111 の円周上を動くので、www は次のように表せる。w=−1+eiθw = -1 + e^{i\theta}w=−1+eiθ (ただし、θ\thetaθ は実数)これを z=w+1w−1z = \frac{w+1}{w-1}z=w−1w+1 に代入する。z=−1+eiθ+1−1+eiθ−1=eiθeiθ−2z = \frac{-1 + e^{i\theta} + 1}{-1 + e^{i\theta} - 1} = \frac{e^{i\theta}}{e^{i\theta} - 2}z=−1+eiθ−1−1+eiθ+1=eiθ−2eiθz=eiθeiθ−2z = \frac{e^{i\theta}}{e^{i\theta} - 2}z=eiθ−2eiθ の分母と分子に e−iθ/2e^{-i\theta/2}e−iθ/2 を掛ける。z=eiθ/2eiθ/2−2e−iθ/2=eiθ/2(cos(θ/2)+isin(θ/2))−2(cos(−θ/2)+isin(−θ/2))=eiθ/2cos(θ/2)+isin(θ/2)−2cos(θ/2)+2isin(θ/2)=eiθ/2−cos(θ/2)+3isin(θ/2)z = \frac{e^{i\theta/2}}{e^{i\theta/2} - 2e^{-i\theta/2}} = \frac{e^{i\theta/2}}{(\cos(\theta/2) + i\sin(\theta/2)) - 2(\cos(-\theta/2) + i\sin(-\theta/2))} = \frac{e^{i\theta/2}}{\cos(\theta/2) + i\sin(\theta/2) - 2\cos(\theta/2) + 2i\sin(\theta/2)} = \frac{e^{i\theta/2}}{-\cos(\theta/2) + 3i\sin(\theta/2)}z=eiθ/2−2e−iθ/2eiθ/2=(cos(θ/2)+isin(θ/2))−2(cos(−θ/2)+isin(−θ/2))eiθ/2=cos(θ/2)+isin(θ/2)−2cos(θ/2)+2isin(θ/2)eiθ/2=−cos(θ/2)+3isin(θ/2)eiθ/2z=eiθ/2−cos(θ/2)+3isin(θ/2)=cos(θ/2)+isin(θ/2)−cos(θ/2)+3isin(θ/2)z = \frac{e^{i\theta/2}}{-\cos(\theta/2) + 3i\sin(\theta/2)} = \frac{\cos(\theta/2) + i\sin(\theta/2)}{-\cos(\theta/2) + 3i\sin(\theta/2)}z=−cos(θ/2)+3isin(θ/2)eiθ/2=−cos(θ/2)+3isin(θ/2)cos(θ/2)+isin(θ/2)z=cos(θ/2)+isin(θ/2)−cos(θ/2)+3isin(θ/2)z = \frac{\cos(\theta/2) + i\sin(\theta/2)}{-\cos(\theta/2) + 3i\sin(\theta/2)}z=−cos(θ/2)+3isin(θ/2)cos(θ/2)+isin(θ/2) の分母と分子に (−cos(θ/2)−3isin(θ/2))(-\cos(\theta/2) - 3i\sin(\theta/2))(−cos(θ/2)−3isin(θ/2)) を掛ける。z=(cos(θ/2)+isin(θ/2))(−cos(θ/2)−3isin(θ/2))(−cos(θ/2)+3isin(θ/2))(−cos(θ/2)−3isin(θ/2))=−cos2(θ/2)−3icos(θ/2)sin(θ/2)−isin(θ/2)cos(θ/2)+3sin2(θ/2)cos2(θ/2)+9sin2(θ/2)=−cos2(θ/2)+3sin2(θ/2)−4isin(θ/2)cos(θ/2)cos2(θ/2)+9sin2(θ/2)=−cos2(θ/2)+3sin2(θ/2)cos2(θ/2)+9sin2(θ/2)−4isin(θ/2)cos(θ/2)cos2(θ/2)+9sin2(θ/2)z = \frac{(\cos(\theta/2) + i\sin(\theta/2))(-\cos(\theta/2) - 3i\sin(\theta/2))}{(-\cos(\theta/2) + 3i\sin(\theta/2))(-\cos(\theta/2) - 3i\sin(\theta/2))} = \frac{-\cos^2(\theta/2) - 3i\cos(\theta/2)\sin(\theta/2) - i\sin(\theta/2)\cos(\theta/2) + 3\sin^2(\theta/2)}{\cos^2(\theta/2) + 9\sin^2(\theta/2)} = \frac{-\cos^2(\theta/2) + 3\sin^2(\theta/2) - 4i\sin(\theta/2)\cos(\theta/2)}{\cos^2(\theta/2) + 9\sin^2(\theta/2)} = \frac{-\cos^2(\theta/2) + 3\sin^2(\theta/2)}{\cos^2(\theta/2) + 9\sin^2(\theta/2)} - \frac{4i\sin(\theta/2)\cos(\theta/2)}{\cos^2(\theta/2) + 9\sin^2(\theta/2)}z=(−cos(θ/2)+3isin(θ/2))(−cos(θ/2)−3isin(θ/2))(cos(θ/2)+isin(θ/2))(−cos(θ/2)−3isin(θ/2))=cos2(θ/2)+9sin2(θ/2)−cos2(θ/2)−3icos(θ/2)sin(θ/2)−isin(θ/2)cos(θ/2)+3sin2(θ/2)=cos2(θ/2)+9sin2(θ/2)−cos2(θ/2)+3sin2(θ/2)−4isin(θ/2)cos(θ/2)=cos2(θ/2)+9sin2(θ/2)−cos2(θ/2)+3sin2(θ/2)−cos2(θ/2)+9sin2(θ/2)4isin(θ/2)cos(θ/2)z=x+iyz = x + iyz=x+iy とおくと、x=−cos2(θ/2)+3sin2(θ/2)cos2(θ/2)+9sin2(θ/2)x = \frac{-\cos^2(\theta/2) + 3\sin^2(\theta/2)}{\cos^2(\theta/2) + 9\sin^2(\theta/2)}x=cos2(θ/2)+9sin2(θ/2)−cos2(θ/2)+3sin2(θ/2)y=−4sin(θ/2)cos(θ/2)cos2(θ/2)+9sin2(θ/2)y = \frac{-4\sin(\theta/2)\cos(\theta/2)}{\cos^2(\theta/2) + 9\sin^2(\theta/2)}y=cos2(θ/2)+9sin2(θ/2)−4sin(θ/2)cos(θ/2)ここで、別の方法を試す。z=w+1w−1z = \frac{w+1}{w-1}z=w−1w+1 より、z(w−1)=w+1z(w-1) = w+1z(w−1)=w+1zw−z=w+1zw - z = w+1zw−z=w+1zw−w=z+1zw - w = z+1zw−w=z+1w(z−1)=z+1w(z-1) = z+1w(z−1)=z+1w=z+1z−1w = \frac{z+1}{z-1}w=z−1z+1∣w+1∣=1|w+1| = 1∣w+1∣=1 より ∣z+1z−1+1∣=1|\frac{z+1}{z-1} + 1| = 1∣z−1z+1+1∣=1∣z+1+z−1z−1∣=1|\frac{z+1+z-1}{z-1}| = 1∣z−1z+1+z−1∣=1∣2zz−1∣=1|\frac{2z}{z-1}| = 1∣z−12z∣=1∣2z∣=∣z−1∣|2z| = |z-1|∣2z∣=∣z−1∣∣2(x+iy)∣=∣x+iy−1∣|2(x+iy)| = |x+iy - 1|∣2(x+iy)∣=∣x+iy−1∣∣2x+2iy∣=∣(x−1)+iy∣|2x+2iy| = |(x-1) + iy|∣2x+2iy∣=∣(x−1)+iy∣(2x)2+(2y)2=(x−1)2+y2\sqrt{(2x)^2 + (2y)^2} = \sqrt{(x-1)^2 + y^2}(2x)2+(2y)2=(x−1)2+y24x2+4y2=x2−2x+1+y24x^2 + 4y^2 = x^2 - 2x + 1 + y^24x2+4y2=x2−2x+1+y23x2+2x+3y2=13x^2 + 2x + 3y^2 = 13x2+2x+3y2=13(x2+23x)+3y2=13(x^2 + \frac{2}{3}x) + 3y^2 = 13(x2+32x)+3y2=13(x2+23x+(13)2)+3y2=1+3(13)23(x^2 + \frac{2}{3}x + (\frac{1}{3})^2) + 3y^2 = 1 + 3(\frac{1}{3})^23(x2+32x+(31)2)+3y2=1+3(31)23(x+13)2+3y2=1+13=433(x+\frac{1}{3})^2 + 3y^2 = 1 + \frac{1}{3} = \frac{4}{3}3(x+31)2+3y2=1+31=34(x+13)2+y2=49(x+\frac{1}{3})^2 + y^2 = \frac{4}{9}(x+31)2+y2=94これは、中心 (−13,0)(-\frac{1}{3}, 0)(−31,0), 半径 23\frac{2}{3}32 の円である。3. 最終的な答え中心 −13-\frac{1}{3}−31, 半径 23\frac{2}{3}32 の円