2次関数 $y=(x-p)^2 + q$ のグラフを、$x$軸方向に1、$y$軸方向に2だけ平行移動させると、$y=(x-6)^2 + 9$ のグラフに重なる。このとき、$p$と$q$の値を求める。

代数学二次関数平行移動グラフ方程式
2025/7/15

1. 問題の内容

2次関数 y=(xp)2+qy=(x-p)^2 + q のグラフを、xx軸方向に1、yy軸方向に2だけ平行移動させると、y=(x6)2+9y=(x-6)^2 + 9 のグラフに重なる。このとき、ppqqの値を求める。

2. 解き方の手順

平行移動に関する知識を利用します。
* xx軸方向に1だけ平行移動させると、xxx1x-1 に置き換わる。
* yy軸方向に2だけ平行移動させると、yyy2y-2 に置き換わる。
したがって、元の関数 y=(xp)2+qy=(x-p)^2 + qxx軸方向に1、yy軸方向に2だけ平行移動させた関数は、
y2=(x1p)2+qy - 2 = (x - 1 - p)^2 + q
整理すると、
y=(x(p+1))2+q+2y = (x - (p+1))^2 + q + 2
これが y=(x6)2+9y=(x-6)^2 + 9 と一致するので、
p+1=6p+1 = 6
q+2=9q+2 = 9
これらを解いて、ppqqを求めます。
p=61=5p = 6 - 1 = 5
q=92=7q = 9 - 2 = 7

3. 最終的な答え

ppは5
qqは7

「代数学」の関連問題

問題は、与えられた行列CとDに対して、交換子積 [C, D] = CD - DC を計算することです。行列CとDはそれぞれ以下の通りです。 $C = \begin{pmatrix} \cos \psi...

行列線形代数交換子積行列の積
2025/7/15

与えられた多項式の積を展開する問題です。具体的には以下の式を展開します。 (3) $(x^2-2xy-y^2)(x-3y)$ (4) $(x^2-3x+5)(2x^2-5x+1)$ (5) $(2x^...

多項式の展開因数分解代数
2025/7/15

すべての実数 $x$ に対して、不等式 $(a-1)x^2 - 2(a-1)x + 3 \geq 0$ が成り立つような定数 $a$ の値の範囲を求めよ。

二次不等式判別式不等式の解法場合分け
2025/7/15

2次方程式 $x^2 - (m+1)x + m = 0$ の2つの解のうち、一方の解がもう一方の解の2乗であるとき、定数 $m$ の値を求める。

二次方程式解と係数の関係因数分解三次方程式
2025/7/15

(3) 関数 $y=ax^2$ について、xの変域が $-2 \leq x \leq 3$ のとき、yの変域は $-36 \leq y \leq 0$ である。このとき、$a$ の値を求める。 (4)...

二次関数関数の最大値三角形の面積グラフ
2025/7/15

画像にある数学の問題は以下の通りです。 (2) 2点 (2, -3), (-1, 9) を通る直線の式を求める。 (2) 2元1次方程式 6x - 2y = 7 のグラフの傾きを求める。 (3) 関数...

一次関数二次関数方程式グラフ傾き放物線
2025/7/15

与えられた関数の中から、以下の条件を満たす関数をそれぞれ選び、番号で答える問題です。 (1) グラフが原点を通るもの (2) グラフがx軸に平行であるもの (3) 変化の割合が常に3であるもの (4)...

関数グラフ一次関数二次関数反比例双曲線
2025/7/15

与えられた2つの式を展開する問題です。 (1) $(x^2 + 5x + 3)(x - 4)$ (2) $(a^2 - 2a - 2)(3 - a)$

展開多項式分配法則
2025/7/15

問題は、以下の3つの方程式を解くことと、ある高校の生徒数に関する文章題を解くことです。 (1) 連立一次方程式: $5x - 3y = 7$、$2x + y = 5$ (2) 二次方程式: $x^2 ...

連立一次方程式二次方程式文章題代数
2025/7/15

2次方程式 $x^2 - 2x + 3 = 0$ の2つの解を $\alpha$, $\beta$ とするとき、$\alpha^6 + \beta^6$ の値を求める問題です。

二次方程式解と係数の関係式の計算
2025/7/15