画像には複数の数学の問題とその解答が記述されています。今回は、**基本39-1** と書かれた問題に着目します。 問題は、漸化式 $a_{n+1} = 3a_n + 2$ を変形し、数列 $\{a_n + 1\}$ が等比数列であることを示し、一般項 $a_n + 1$ を求める、という内容です。
2025/7/2
1. 問題の内容
画像には複数の数学の問題とその解答が記述されています。今回は、**基本39-1** と書かれた問題に着目します。
問題は、漸化式 を変形し、数列 が等比数列であることを示し、一般項 を求める、という内容です。
2. 解き方の手順
(1) を解きます。
(2) 漸化式 を を用いて変形します。
(3) 数列 が等比数列であることを確認します。
より、数列 は公比が の等比数列です。
(4) 数列 の初項を求めます。
であるので、。
(5) 数列 の一般項を求めます。
初項が 、公比が の等比数列なので、 となります。