関数 $y = \sqrt{3}\sin x - \cos x$ の最大値と最小値を求めよ。

解析学三角関数最大値最小値三角関数の合成
2025/7/2

1. 問題の内容

関数 y=3sinxcosxy = \sqrt{3}\sin x - \cos x の最大値と最小値を求めよ。

2. 解き方の手順

三角関数の合成を利用します。
y=3sinxcosxy = \sqrt{3}\sin x - \cos xRsin(x+α)R\sin(x + \alpha) の形に変形します。
R=(3)2+(1)2=3+1=4=2R = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2
cosα=32\cos \alpha = \frac{\sqrt{3}}{2}, sinα=12\sin \alpha = -\frac{1}{2} を満たす α\alphaα=π6\alpha = -\frac{\pi}{6}
したがって、
y=2sin(xπ6)y = 2\sin(x - \frac{\pi}{6})
1sin(xπ6)1-1 \le \sin(x - \frac{\pi}{6}) \le 1 より、
22sin(xπ6)2-2 \le 2\sin(x - \frac{\pi}{6}) \le 2
よって、最大値は 2、最小値は -2 です。

3. 最終的な答え

最大値: 2
最小値: -2

「解析学」の関連問題

方程式 $\sin x - x \cos x = 0$ が、開区間 $(\pi, \frac{3}{2}\pi)$ に少なくとも1つの解をもつことを示す。

三角関数中間値の定理方程式の解
2025/7/2

関数 $f(x_1, x_2, x_3) = e^{x_1} \sin x_2 \cos x_3$ に対して、点 $c = (\frac{\pi}{3}, \frac{\pi}{4}, 0)$ におけ...

多変数関数テイラー展開偏微分
2025/7/2

問題3は、以下の2つの極限値を求める問題です。 (1) $\lim_{x\to 0} \frac{\sinh x}{x}$ (2) $\lim_{x\to 0} \frac{\tanh x}{x}$ ...

極限sinhtanhロピタルの定理逆三角関数
2025/7/2

次の極限値を求めます。 (1) $\lim_{x \to 0} \frac{\sinh x}{x}$ (2) $\lim_{x \to 0} \frac{\tanh x}{x}$

極限テイラー展開双曲線関数ロピタルの定理
2025/7/2

3次関数 $f(x) = 2x^3 - 3(a+2)x^2 + 12ax$ について、以下の問いに答える。ただし、$a<2$ とする。 (1) この関数の極値を求めよ。 (2) 極大値と極小値の差が6...

3次関数極値微分積分面積
2025/7/2

## 1. 問題の内容

極限関数の極限有理化ロピタルの定理
2025/7/2

与えられた4つの極限値を求める問題です。 (1) $\lim_{x \to 0} \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{x^2}$ (2) $\lim_{x \to \...

極限関数の極限三角関数対数関数
2025/7/2

関数 $f(x, y) = x^3 + 2xy + y^2 - x$ の停留点を求める。

多変数関数偏微分停留点連立方程式二次方程式
2025/7/2

次の関数のグラフを書き、周期を求めよ。 (1) $y = 2\cos\theta$ (2) $y = \frac{1}{2}\sin\theta$ (3) $y = \frac{1}{2}\tan\t...

三角関数グラフ周期cossintan
2025/7/2

(1) 関数 $y = xe^{-x^2}$ を微分する。 (2) 定積分 $\int_{-1}^{1} (3x+2)(x-2)dx$ を計算する。

微分定積分関数の微分積分計算
2025/7/2