はい、承知いたしました。画像に写っている問題を解きます。解析学極限有理化三角関数2025/7/2はい、承知いたしました。画像に写っている問題を解きます。**1. 問題の内容**与えられた極限値を計算する問題です。問題1の(1), (3), (2)を解きます。(1) limx→01+x2−1−x2x2\lim_{x\to 0} \frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{x^2}limx→0x21+x2−1−x2(3) limx→0sin6xsin5x\lim_{x\to 0} \frac{\sin 6x}{\sin 5x}limx→0sin5xsin6x(2) limx→∞2x(x+1−x)\lim_{x\to \infty} \sqrt{2x} (\sqrt{x+1}-\sqrt{x})limx→∞2x(x+1−x)**2. 解き方の手順**(1) 分母の有理化を行います。1+x2+1−x2\sqrt{1+x^2} + \sqrt{1-x^2}1+x2+1−x2 を分子と分母にかけます。limx→01+x2−1−x2x2=limx→0(1+x2−1−x2)(1+x2+1−x2)x2(1+x2+1−x2)\lim_{x\to 0} \frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{x^2} = \lim_{x\to 0} \frac{(\sqrt{1+x^2}-\sqrt{1-x^2})(\sqrt{1+x^2}+\sqrt{1-x^2})}{x^2(\sqrt{1+x^2}+\sqrt{1-x^2})}limx→0x21+x2−1−x2=limx→0x2(1+x2+1−x2)(1+x2−1−x2)(1+x2+1−x2)=limx→0(1+x2)−(1−x2)x2(1+x2+1−x2)=limx→02x2x2(1+x2+1−x2)= \lim_{x\to 0} \frac{(1+x^2)-(1-x^2)}{x^2(\sqrt{1+x^2}+\sqrt{1-x^2})} = \lim_{x\to 0} \frac{2x^2}{x^2(\sqrt{1+x^2}+\sqrt{1-x^2})}=limx→0x2(1+x2+1−x2)(1+x2)−(1−x2)=limx→0x2(1+x2+1−x2)2x2=limx→021+x2+1−x2=21+0+1−0=21+1=1= \lim_{x\to 0} \frac{2}{\sqrt{1+x^2}+\sqrt{1-x^2}} = \frac{2}{\sqrt{1+0}+\sqrt{1-0}} = \frac{2}{1+1} = 1=limx→01+x2+1−x22=1+0+1−02=1+12=1(3) limx→0sin6xsin5x\lim_{x\to 0} \frac{\sin 6x}{\sin 5x}limx→0sin5xsin6xlimx→0sin6xsin5x=limx→0sin6x6x⋅5xsin5x⋅6x5x=limx→0sin6x6x⋅limx→05xsin5x⋅limx→06x5x\lim_{x\to 0} \frac{\sin 6x}{\sin 5x} = \lim_{x\to 0} \frac{\sin 6x}{6x} \cdot \frac{5x}{\sin 5x} \cdot \frac{6x}{5x} = \lim_{x\to 0} \frac{\sin 6x}{6x} \cdot \lim_{x\to 0} \frac{5x}{\sin 5x} \cdot \lim_{x\to 0} \frac{6x}{5x}limx→0sin5xsin6x=limx→06xsin6x⋅sin5x5x⋅5x6x=limx→06xsin6x⋅limx→0sin5x5x⋅limx→05x6x=1⋅1⋅65=65= 1 \cdot 1 \cdot \frac{6}{5} = \frac{6}{5}=1⋅1⋅56=56(2) limx→∞2x(x+1−x)\lim_{x\to \infty} \sqrt{2x} (\sqrt{x+1}-\sqrt{x})limx→∞2x(x+1−x)limx→∞2x(x+1−x)=limx→∞2x(x+1−x)(x+1+x)x+1+x=limx→∞2x(x+1)−xx+1+x\lim_{x\to \infty} \sqrt{2x} (\sqrt{x+1}-\sqrt{x}) = \lim_{x\to \infty} \sqrt{2x} \frac{(\sqrt{x+1}-\sqrt{x})(\sqrt{x+1}+\sqrt{x})}{\sqrt{x+1}+\sqrt{x}} = \lim_{x\to \infty} \sqrt{2x} \frac{(x+1)-x}{\sqrt{x+1}+\sqrt{x}} limx→∞2x(x+1−x)=limx→∞2xx+1+x(x+1−x)(x+1+x)=limx→∞2xx+1+x(x+1)−x=limx→∞2xx+1+x=limx→∞21+1x+1=21+0+1=22= \lim_{x\to \infty} \frac{\sqrt{2x}}{\sqrt{x+1}+\sqrt{x}} = \lim_{x\to \infty} \frac{\sqrt{2}}{\sqrt{1+\frac{1}{x}}+1} = \frac{\sqrt{2}}{\sqrt{1+0}+1} = \frac{\sqrt{2}}{2}=limx→∞x+1+x2x=limx→∞1+x1+12=1+0+12=22**3. 最終的な答え**(1) の答え: 1(3) の答え: 65\frac{6}{5}56(2) の答え: 22\frac{\sqrt{2}}{2}22