$x = -\frac{3}{2}$、$y = 1$のとき、式$6(2x^2 - 3x + 4y) - 4(3x^2 - 5x + 7y)$の値を求めます。

代数学式の計算代入多項式
2025/7/2

1. 問題の内容

x=32x = -\frac{3}{2}y=1y = 1のとき、式6(2x23x+4y)4(3x25x+7y)6(2x^2 - 3x + 4y) - 4(3x^2 - 5x + 7y)の値を求めます。

2. 解き方の手順

まず、与えられた式を展開して整理します。
6(2x23x+4y)4(3x25x+7y)=12x218x+24y12x2+20x28y6(2x^2 - 3x + 4y) - 4(3x^2 - 5x + 7y) = 12x^2 - 18x + 24y - 12x^2 + 20x - 28y
=(12x212x2)+(18x+20x)+(24y28y)= (12x^2 - 12x^2) + (-18x + 20x) + (24y - 28y)
=2x4y= 2x - 4y
次に、x=32x = -\frac{3}{2}y=1y = 1を代入します。
2(32)4(1)=34=72(-\frac{3}{2}) - 4(1) = -3 - 4 = -7

3. 最終的な答え

-7

「代数学」の関連問題

与えられた複数の式を簡単にしたり、計算したりする問題です。指数、平方根、累乗根など、様々な数学の概念が含まれています。

指数平方根累乗根計算
2025/7/8

与えられた2次方程式を解く問題です。 左側の問題1は(1)から(5)まで、右側の問題2も(1)から(5)まであります。

二次方程式平方根方程式
2025/7/8

3次方程式 $x^3 - 5x^2 + 4 = 0$ を解きます。

3次方程式因数分解解の公式二次方程式
2025/7/8

与えられた二次方程式を解く問題です。具体的には、以下の5つの方程式を解く必要があります。 (1) $x^2 + 4 = 45$ (2) $\frac{1}{5}x^2 = 20$ (3) $x^2 +...

二次方程式方程式平方根
2025/7/8

問題は、数学の問題集の一部で、以下の5つの小問から構成されています。 * $\frac{\sqrt{54}}{\sqrt{3}} + \frac{5}{\sqrt{2}}$ を計算して簡単にするこ...

平方根の計算式の展開因数分解絶対値不等式
2025/7/8

与えられた4つの二次方程式を解く問題です。 (1) $16x^2 - 40 = 9$ (2) $64x^2 - 11 = 0$ (3) $3x^2 + 6 = 9 - 7x^2$ (4) $5x^2 ...

二次方程式方程式平方根解の公式
2025/7/8

問題は以下の2つです。 (3) $x^2 - 40 = 9$ (4) $\frac{1}{2}x^2 = 25$

二次方程式平方根方程式の解法
2025/7/8

次の4つの式を計算する。 (1) $2\sqrt{7} - \sqrt{63} + \sqrt{28}$ (2) $\sqrt{5}(3\sqrt{10} - 2\sqrt{5})$ (3) $(\s...

平方根式の計算根号有理化
2025/7/8

与えられた不等式 $|2x - 5| > 3$ を解き、$x$ の範囲を求める問題です。

絶対値不等式一次不等式
2025/7/8

次の方程式を解きます。 (1) $x^2 = 9$ (2) $3x^2 = 42$

二次方程式平方根方程式の解法
2025/7/8