与えられた2次方程式を解く問題です。 左側の問題1は(1)から(5)まで、右側の問題2も(1)から(5)まであります。代数学二次方程式平方根方程式2025/7/81. 問題の内容与えられた2次方程式を解く問題です。左側の問題1は(1)から(5)まで、右側の問題2も(1)から(5)まであります。2. 解き方の手順問題1(1) x2+4=45x^2 + 4 = 45x2+4=45x2=45−4x^2 = 45 - 4x2=45−4x2=41x^2 = 41x2=41x=±41x = \pm \sqrt{41}x=±41(2) 15x2=20\frac{1}{5}x^2 = 2051x2=20x2=20×5x^2 = 20 \times 5x2=20×5x2=100x^2 = 100x2=100x=±100x = \pm \sqrt{100}x=±100x=±10x = \pm 10x=±10(3) x2+1=64x^2 + 1 = 64x2+1=64x2=64−1x^2 = 64 - 1x2=64−1x2=63x^2 = 63x2=63x=±63x = \pm \sqrt{63}x=±63x=±9×7x = \pm \sqrt{9 \times 7}x=±9×7x=±37x = \pm 3\sqrt{7}x=±37(4) 2x2+9=x2+902x^2 + 9 = x^2 + 902x2+9=x2+902x2−x2=90−92x^2 - x^2 = 90 - 92x2−x2=90−9x2=81x^2 = 81x2=81x=±81x = \pm \sqrt{81}x=±81x=±9x = \pm 9x=±9(5) 13x2−18=0\frac{1}{3}x^2 - 18 = 031x2−18=013x2=18\frac{1}{3}x^2 = 1831x2=18x2=18×3x^2 = 18 \times 3x2=18×3x2=54x^2 = 54x2=54x=±54x = \pm \sqrt{54}x=±54x=±9×6x = \pm \sqrt{9 \times 6}x=±9×6x=±36x = \pm 3\sqrt{6}x=±36問題2(1) 9x2=29x^2 = 29x2=2x2=29x^2 = \frac{2}{9}x2=92x=±29x = \pm \sqrt{\frac{2}{9}}x=±92x=±23x = \pm \frac{\sqrt{2}}{3}x=±32(2) 5x2−12=45x^2 - 12 = 45x2−12=45x2=4+125x^2 = 4 + 125x2=4+125x2=165x^2 = 165x2=16x2=165x^2 = \frac{16}{5}x2=516x=±165x = \pm \sqrt{\frac{16}{5}}x=±516x=±45x = \pm \frac{4}{\sqrt{5}}x=±54x=±455x = \pm \frac{4\sqrt{5}}{5}x=±545(3) 4x2−10=04x^2 - 10 = 04x2−10=04x2=104x^2 = 104x2=10x2=104x^2 = \frac{10}{4}x2=410x2=52x^2 = \frac{5}{2}x2=25x=±52x = \pm \sqrt{\frac{5}{2}}x=±25x=±52x = \pm \frac{\sqrt{5}}{\sqrt{2}}x=±25x=±102x = \pm \frac{\sqrt{10}}{2}x=±210(4) 7x2+4=9−5x27x^2 + 4 = 9 - 5x^27x2+4=9−5x27x2+5x2=9−47x^2 + 5x^2 = 9 - 47x2+5x2=9−412x2=512x^2 = 512x2=5x2=512x^2 = \frac{5}{12}x2=125x=±512x = \pm \sqrt{\frac{5}{12}}x=±125x=±512x = \pm \frac{\sqrt{5}}{\sqrt{12}}x=±125x=±523x = \pm \frac{\sqrt{5}}{2\sqrt{3}}x=±235x=±156x = \pm \frac{\sqrt{15}}{6}x=±615(5) 20x2−9=1820x^2 - 9 = 1820x2−9=1820x2=18+920x^2 = 18 + 920x2=18+920x2=2720x^2 = 2720x2=27x2=2720x^2 = \frac{27}{20}x2=2027x=±2720x = \pm \sqrt{\frac{27}{20}}x=±2027x=±2720x = \pm \frac{\sqrt{27}}{\sqrt{20}}x=±2027x=±3325x = \pm \frac{3\sqrt{3}}{2\sqrt{5}}x=±2533x=±31510x = \pm \frac{3\sqrt{15}}{10}x=±103153. 最終的な答え問題1:(1) x=±41x = \pm \sqrt{41}x=±41(2) x=±10x = \pm 10x=±10(3) x=±37x = \pm 3\sqrt{7}x=±37(4) x=±9x = \pm 9x=±9(5) x=±36x = \pm 3\sqrt{6}x=±36問題2:(1) x=±23x = \pm \frac{\sqrt{2}}{3}x=±32(2) x=±455x = \pm \frac{4\sqrt{5}}{5}x=±545(3) x=±102x = \pm \frac{\sqrt{10}}{2}x=±210(4) x=±156x = \pm \frac{\sqrt{15}}{6}x=±615(5) x=±31510x = \pm \frac{3\sqrt{15}}{10}x=±10315