与えられた2次方程式を解く問題です。 左側の問題1は(1)から(5)まで、右側の問題2も(1)から(5)まであります。

代数学二次方程式平方根方程式
2025/7/8

1. 問題の内容

与えられた2次方程式を解く問題です。
左側の問題1は(1)から(5)まで、右側の問題2も(1)から(5)まであります。

2. 解き方の手順

問題1
(1) x2+4=45x^2 + 4 = 45
x2=454x^2 = 45 - 4
x2=41x^2 = 41
x=±41x = \pm \sqrt{41}
(2) 15x2=20\frac{1}{5}x^2 = 20
x2=20×5x^2 = 20 \times 5
x2=100x^2 = 100
x=±100x = \pm \sqrt{100}
x=±10x = \pm 10
(3) x2+1=64x^2 + 1 = 64
x2=641x^2 = 64 - 1
x2=63x^2 = 63
x=±63x = \pm \sqrt{63}
x=±9×7x = \pm \sqrt{9 \times 7}
x=±37x = \pm 3\sqrt{7}
(4) 2x2+9=x2+902x^2 + 9 = x^2 + 90
2x2x2=9092x^2 - x^2 = 90 - 9
x2=81x^2 = 81
x=±81x = \pm \sqrt{81}
x=±9x = \pm 9
(5) 13x218=0\frac{1}{3}x^2 - 18 = 0
13x2=18\frac{1}{3}x^2 = 18
x2=18×3x^2 = 18 \times 3
x2=54x^2 = 54
x=±54x = \pm \sqrt{54}
x=±9×6x = \pm \sqrt{9 \times 6}
x=±36x = \pm 3\sqrt{6}
問題2
(1) 9x2=29x^2 = 2
x2=29x^2 = \frac{2}{9}
x=±29x = \pm \sqrt{\frac{2}{9}}
x=±23x = \pm \frac{\sqrt{2}}{3}
(2) 5x212=45x^2 - 12 = 4
5x2=4+125x^2 = 4 + 12
5x2=165x^2 = 16
x2=165x^2 = \frac{16}{5}
x=±165x = \pm \sqrt{\frac{16}{5}}
x=±45x = \pm \frac{4}{\sqrt{5}}
x=±455x = \pm \frac{4\sqrt{5}}{5}
(3) 4x210=04x^2 - 10 = 0
4x2=104x^2 = 10
x2=104x^2 = \frac{10}{4}
x2=52x^2 = \frac{5}{2}
x=±52x = \pm \sqrt{\frac{5}{2}}
x=±52x = \pm \frac{\sqrt{5}}{\sqrt{2}}
x=±102x = \pm \frac{\sqrt{10}}{2}
(4) 7x2+4=95x27x^2 + 4 = 9 - 5x^2
7x2+5x2=947x^2 + 5x^2 = 9 - 4
12x2=512x^2 = 5
x2=512x^2 = \frac{5}{12}
x=±512x = \pm \sqrt{\frac{5}{12}}
x=±512x = \pm \frac{\sqrt{5}}{\sqrt{12}}
x=±523x = \pm \frac{\sqrt{5}}{2\sqrt{3}}
x=±156x = \pm \frac{\sqrt{15}}{6}
(5) 20x29=1820x^2 - 9 = 18
20x2=18+920x^2 = 18 + 9
20x2=2720x^2 = 27
x2=2720x^2 = \frac{27}{20}
x=±2720x = \pm \sqrt{\frac{27}{20}}
x=±2720x = \pm \frac{\sqrt{27}}{\sqrt{20}}
x=±3325x = \pm \frac{3\sqrt{3}}{2\sqrt{5}}
x=±31510x = \pm \frac{3\sqrt{15}}{10}

3. 最終的な答え

問題1:
(1) x=±41x = \pm \sqrt{41}
(2) x=±10x = \pm 10
(3) x=±37x = \pm 3\sqrt{7}
(4) x=±9x = \pm 9
(5) x=±36x = \pm 3\sqrt{6}
問題2:
(1) x=±23x = \pm \frac{\sqrt{2}}{3}
(2) x=±455x = \pm \frac{4\sqrt{5}}{5}
(3) x=±102x = \pm \frac{\sqrt{10}}{2}
(4) x=±156x = \pm \frac{\sqrt{15}}{6}
(5) x=±31510x = \pm \frac{3\sqrt{15}}{10}