次の循環小数を分数で表します。 (1) $0.\dot{6}$ (2) $0.\dot{2}3\dot{4}$ (3) $0.4\dot{7}0\dot{2}$算数分数循環小数小数2025/7/31. 問題の内容次の循環小数を分数で表します。(1) 0.6˙0.\dot{6}0.6˙(2) 0.2˙34˙0.\dot{2}3\dot{4}0.2˙34˙(3) 0.47˙02˙0.4\dot{7}0\dot{2}0.47˙02˙2. 解き方の手順(1) x=0.6˙x = 0.\dot{6}x=0.6˙ とおきます。x=0.666...x = 0.666...x=0.666...両辺を10倍すると、 10x=6.666...10x = 6.666...10x=6.666...10x−x=6.666...−0.666...10x - x = 6.666... - 0.666...10x−x=6.666...−0.666...9x=69x = 69x=6x=69=23x = \frac{6}{9} = \frac{2}{3}x=96=32(2) x=0.2˙34˙x = 0.\dot{2}3\dot{4}x=0.2˙34˙ とおきます。x=0.234234...x = 0.234234...x=0.234234...両辺を1000倍すると、 1000x=234.234234...1000x = 234.234234...1000x=234.234234...1000x−x=234.234234...−0.234234...1000x - x = 234.234234... - 0.234234...1000x−x=234.234234...−0.234234...999x=234999x = 234999x=234x=234999=26111x = \frac{234}{999} = \frac{26}{111}x=999234=11126(3) x=0.47˙02˙x = 0.4\dot{7}0\dot{2}x=0.47˙02˙ とおきます。x=0.4702702702...x = 0.4702702702...x=0.4702702702...両辺を10倍すると、 10x=4.702702702...10x = 4.702702702...10x=4.702702702...両辺を10000倍すると、 10000x=4702.702702702...10000x = 4702.702702702...10000x=4702.702702702...10000x−10x=4702.702702702...−4.702702702...10000x - 10x = 4702.702702702... - 4.702702702...10000x−10x=4702.702702702...−4.702702702...9990x=46989990x = 46989990x=4698x=46989990=23494995=7831665=261555=87185x = \frac{4698}{9990} = \frac{2349}{4995} = \frac{783}{1665} = \frac{261}{555} = \frac{87}{185}x=99904698=49952349=1665783=555261=185873. 最終的な答え(1) 23\frac{2}{3}32(2) 26111\frac{26}{111}11126(3) 87185\frac{87}{185}18587