定積分 $\int_{1}^{2} (6x^5 + 5x^4 - \frac{1}{x^2}) dx$ を計算します。解析学定積分積分計算2025/7/31. 問題の内容定積分 ∫12(6x5+5x4−1x2)dx\int_{1}^{2} (6x^5 + 5x^4 - \frac{1}{x^2}) dx∫12(6x5+5x4−x21)dx を計算します。2. 解き方の手順まず、積分を計算します。∫(6x5+5x4−1x2)dx=∫(6x5+5x4−x−2)dx\int (6x^5 + 5x^4 - \frac{1}{x^2}) dx = \int (6x^5 + 5x^4 - x^{-2}) dx∫(6x5+5x4−x21)dx=∫(6x5+5x4−x−2)dx=6∫x5dx+5∫x4dx−∫x−2dx= 6\int x^5 dx + 5\int x^4 dx - \int x^{-2} dx=6∫x5dx+5∫x4dx−∫x−2dx=6x66+5x55−x−1−1+C= 6\frac{x^6}{6} + 5\frac{x^5}{5} - \frac{x^{-1}}{-1} + C=66x6+55x5−−1x−1+C=x6+x5+1x+C= x^6 + x^5 + \frac{1}{x} + C=x6+x5+x1+C次に、定積分を計算します。∫12(6x5+5x4−1x2)dx=[x6+x5+1x]12\int_{1}^{2} (6x^5 + 5x^4 - \frac{1}{x^2}) dx = [x^6 + x^5 + \frac{1}{x}]_{1}^{2}∫12(6x5+5x4−x21)dx=[x6+x5+x1]12=(26+25+12)−(16+15+11)= (2^6 + 2^5 + \frac{1}{2}) - (1^6 + 1^5 + \frac{1}{1})=(26+25+21)−(16+15+11)=(64+32+12)−(1+1+1)= (64 + 32 + \frac{1}{2}) - (1 + 1 + 1)=(64+32+21)−(1+1+1)=(96+12)−3= (96 + \frac{1}{2}) - 3=(96+21)−3=93+12= 93 + \frac{1}{2}=93+21=1862+12= \frac{186}{2} + \frac{1}{2}=2186+21=1872= \frac{187}{2}=21873. 最終的な答え1872\frac{187}{2}2187