数列 $a^2, 10, -a$ が等差数列であるとき、$a$ の値を求めよ。ただし、$a$ の値は2つあり、小さい方から順に答える。

代数学等差数列二次方程式因数分解数列
2025/7/3

1. 問題の内容

数列 a2,10,aa^2, 10, -a が等差数列であるとき、aa の値を求めよ。ただし、aa の値は2つあり、小さい方から順に答える。

2. 解き方の手順

等差数列の性質より、隣り合う項の差が一定である。したがって、
10a2=a1010 - a^2 = -a - 10
この式を整理して、aa について解く。
10a2=a1010 - a^2 = -a - 10
a2a20=0a^2 - a - 20 = 0
(a5)(a+4)=0(a - 5)(a + 4) = 0
よって、a=5a = 5 または a=4a = -4 となる。
aa の値が小さい順に答えるので、a=4,5a = -4, 5

3. 最終的な答え

a=4,5a = -4, 5

「代数学」の関連問題

与えられた式 $x^2 - 4y^2 + 4y - 1$ を因数分解してください。

因数分解多項式二次式
2025/7/3

与えられた複素数に対して、それぞれの共役複素数を求める問題です。

複素数共役複素数
2025/7/3

与えられた式 $(x+1)^2 - 7(x+1) - 30$ を因数分解する問題です。

因数分解多項式二次式
2025/7/3

与えられた式 $x^2 + 6x + 9 - y^2$ を因数分解する。

因数分解二次式式の展開
2025/7/3

0 <= x < 2πの範囲で、以下の(1)の方程式と(2)の不等式を解く問題です。 (1) $2\cos{2x} + 4\cos{x} - 1 = 0$ (2) $\cos{x} < \sqrt{3...

三角関数方程式不等式三角関数の合成2倍角の公式
2025/7/3

2点 $A(a+1, a-1)$ と $B(2a, a^2-1)$ が与えられている。 (1) 2点A, Bが異なる点となるような $a$ の条件を求める。 (2) 直線ABの方程式を求める。 (3)...

座標平面直線の方程式条件連立方程式
2025/7/3

あめ2個とガム1個の値段が110円、あめ2個とガム4個の値段が320円であるとき、ガム1個とあめ1個の値段を求める問題です。

連立方程式文章問題方程式価格
2025/7/3

写真にある問題の中から、3番の問題を解きます。 $x \geq 3$, $y \geq \frac{1}{3}$, $xy = 27$のとき、$(\log_3 x)(\log_3 y)$の最大値と最小...

対数最大値最小値不等式二次関数
2025/7/3

与えられた式 $x \times (-4) \times (y+1)$ を簡略化します。

式の簡略化分配法則多項式
2025/7/3

関数 $f(x) = ax + b$ の逆関数を $f^{-1}(x)$ とする。$f^{-1}(5) = 4$ かつ $f^{-1}(-5) = -1$ のとき、定数 $a, b$ の値を求めよ。

一次関数逆関数連立方程式
2025/7/3