与えられた数学の問題は、根号を含む式の計算問題です。問題は全部で12問あります。代数学根号式の計算展開2025/7/31. 問題の内容与えられた数学の問題は、根号を含む式の計算問題です。問題は全部で12問あります。2. 解き方の手順(3) (22−1)(22−3)(2\sqrt{2}-1)(2\sqrt{2}-3)(22−1)(22−3)まず、展開します。(22−1)(22−3)=(22)(22)+(22)(−3)+(−1)(22)+(−1)(−3)(2\sqrt{2}-1)(2\sqrt{2}-3) = (2\sqrt{2})(2\sqrt{2}) + (2\sqrt{2})(-3) + (-1)(2\sqrt{2}) + (-1)(-3)(22−1)(22−3)=(22)(22)+(22)(−3)+(−1)(22)+(−1)(−3)=4(2)−62−22+3= 4(2) - 6\sqrt{2} - 2\sqrt{2} + 3=4(2)−62−22+3=8−82+3= 8 - 8\sqrt{2} + 3=8−82+3=11−82= 11 - 8\sqrt{2}=11−82(4) (5+2)2(\sqrt{5}+\sqrt{2})^2(5+2)2(5+2)2=(5)2+2(5)(2)+(2)2(\sqrt{5}+\sqrt{2})^2 = (\sqrt{5})^2 + 2(\sqrt{5})(\sqrt{2}) + (\sqrt{2})^2(5+2)2=(5)2+2(5)(2)+(2)2=5+210+2= 5 + 2\sqrt{10} + 2=5+210+2=7+210= 7 + 2\sqrt{10}=7+210(5) (2−1)2(\sqrt{2}-1)^2(2−1)2(2−1)2=(2)2−2(2)(1)+(1)2(\sqrt{2}-1)^2 = (\sqrt{2})^2 - 2(\sqrt{2})(1) + (1)^2(2−1)2=(2)2−2(2)(1)+(1)2=2−22+1= 2 - 2\sqrt{2} + 1=2−22+1=3−22= 3 - 2\sqrt{2}=3−22(6) (1−7)2(1-\sqrt{7})^2(1−7)2(1−7)2=(1)2−2(1)(7)+(7)2(1-\sqrt{7})^2 = (1)^2 - 2(1)(\sqrt{7}) + (\sqrt{7})^2(1−7)2=(1)2−2(1)(7)+(7)2=1−27+7= 1 - 2\sqrt{7} + 7=1−27+7=8−27= 8 - 2\sqrt{7}=8−27(7) (6−2)2(\sqrt{6}-\sqrt{2})^2(6−2)2(6−2)2=(6)2−2(6)(2)+(2)2(\sqrt{6}-\sqrt{2})^2 = (\sqrt{6})^2 - 2(\sqrt{6})(\sqrt{2}) + (\sqrt{2})^2(6−2)2=(6)2−2(6)(2)+(2)2=6−212+2= 6 - 2\sqrt{12} + 2=6−212+2=8−24×3= 8 - 2\sqrt{4 \times 3}=8−24×3=8−2(23)= 8 - 2(2\sqrt{3})=8−2(23)=8−43= 8 - 4\sqrt{3}=8−43(8) (7+2)(7−2)(\sqrt{7}+2)(\sqrt{7}-2)(7+2)(7−2)(7+2)(7−2)=(7)2−(2)2(\sqrt{7}+2)(\sqrt{7}-2) = (\sqrt{7})^2 - (2)^2(7+2)(7−2)=(7)2−(2)2=7−4= 7 - 4=7−4=3= 3=3(9) (3+5)(3−5)(3+\sqrt{5})(3-\sqrt{5})(3+5)(3−5)(3+5)(3−5)=(3)2−(5)2(3+\sqrt{5})(3-\sqrt{5}) = (3)^2 - (\sqrt{5})^2(3+5)(3−5)=(3)2−(5)2=9−5= 9 - 5=9−5=4= 4=4(10) (2+6)(2−6)(\sqrt{2}+\sqrt{6})(\sqrt{2}-\sqrt{6})(2+6)(2−6)(2+6)(2−6)=(2)2−(6)2(\sqrt{2}+\sqrt{6})(\sqrt{2}-\sqrt{6}) = (\sqrt{2})^2 - (\sqrt{6})^2(2+6)(2−6)=(2)2−(6)2=2−6= 2 - 6=2−6=−4= -4=−4(11) (2+2)(2−1)(2+\sqrt{2})(\sqrt{2}-1)(2+2)(2−1)(2+2)(2−1)=22−2+2−2(2+\sqrt{2})(\sqrt{2}-1) = 2\sqrt{2} - 2 + 2 - \sqrt{2}(2+2)(2−1)=22−2+2−2=2= \sqrt{2}=2(12) (12−8)(3+2)(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2})(12−8)(3+2)(12−8)(3+2)=(23−22)(3+2)(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2}) = (2\sqrt{3}-2\sqrt{2})(\sqrt{3}+\sqrt{2})(12−8)(3+2)=(23−22)(3+2)=2(3)2+26−26−2(2)2= 2(\sqrt{3})^2 + 2\sqrt{6} - 2\sqrt{6} - 2(\sqrt{2})^2=2(3)2+26−26−2(2)2=2(3)−2(2)= 2(3) - 2(2)=2(3)−2(2)=6−4= 6 - 4=6−4=2= 2=23. 最終的な答え(3) 11−8211 - 8\sqrt{2}11−82(4) 7+2107 + 2\sqrt{10}7+210(5) 3−223 - 2\sqrt{2}3−22(6) 8−278 - 2\sqrt{7}8−27(7) 8−438 - 4\sqrt{3}8−43(8) 333(9) 444(10) −4-4−4(11) 2\sqrt{2}2(12) 222