与えられた恒等式 $\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right)$ を利用して、和 $S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)}$ を求める問題です。

解析学級数部分分数分解望遠鏡和シグマ
2025/7/3

1. 問題の内容

与えられた恒等式 1(2k1)(2k+1)=12(12k112k+1)\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) を利用して、和 S=113+135+157++1(2n1)(2n+1)S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} を求める問題です。

2. 解き方の手順

まず、与えられた恒等式を SS の各項に適用します。
S=113+135+157++1(2n1)(2n+1)S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)}
S=12(1113)+12(1315)+12(1517)++12(12n112n+1)S = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{3} \right) + \frac{1}{2} \left( \frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left( \frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right)
12\frac{1}{2} でくくると、
S=12[(1113)+(1315)+(1517)++(12n112n+1)]S = \frac{1}{2} \left[ \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \dots + \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \right]
括弧の中を見ると、多くの項が打ち消し合うことがわかります。これは、望遠鏡和 (telescoping sum) と呼ばれるものです。具体的には、 13-\frac{1}{3}13\frac{1}{3}15-\frac{1}{5}15\frac{1}{5} などが打ち消し合います。最終的に残るのは、最初の項の 11\frac{1}{1} と、最後の項の 12n+1-\frac{1}{2n+1} だけです。
S=12(112n+1)S = \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right)
S=12(2n+12n+112n+1)S = \frac{1}{2} \left( \frac{2n+1}{2n+1} - \frac{1}{2n+1} \right)
S=12(2n2n+1)S = \frac{1}{2} \left( \frac{2n}{2n+1} \right)
S=n2n+1S = \frac{n}{2n+1}

3. 最終的な答え

S=n2n+1S = \frac{n}{2n+1}

「解析学」の関連問題

$z = f(x, y)$ を全微分可能な関数とし、$x = u \cos\alpha + v \sin\alpha$, $y = -u \sin\alpha + v \cos\alpha$ ($\a...

偏微分合成関数の微分全微分変数変換
2025/7/3

$0 \le x < 2\pi$ のとき、次の方程式と不等式を解く。 (1) $2\cos{2x} + 4\cos{x} - 1 = 0$ (2) $\cos{x} < \sqrt{3}\sin{x}...

三角関数方程式不等式三角関数の合成解の範囲
2025/7/3

与えられた二つの関数をフーリエ級数展開する問題です。それぞれの関数は周期関数とします。 (1) $f(x) = 2x - 1 \quad (-\pi \le x < \pi)$ (2) $f(x) =...

フーリエ級数周期関数積分
2025/7/3

0 <= θ < 2πの範囲で、以下の三角関数に関する方程式または不等式を解く問題です。 (2) $2\cos\theta + \sqrt{2} > 0$ (5) $\cos(2\theta - \f...

三角関数三角不等式三角方程式cos
2025/7/3

問題1: 放物線 $y = -2x^2 + 4x$ 上の $x=2$ の点における接線の傾きを求めよ。 問題2: 放物線 $y = x^2 - 5x$ 上の点 $(1, -4)$ における接線の方程式...

微分接線導関数放物線
2025/7/3

放物線 $y = x^2 - 5x$ 上の点 $(1, -4)$ における接線の方程式を求める問題です。

接線微分放物線導関数
2025/7/3

半径1の円柱を、底面の直径を含み底面と角度$\alpha$ $(0 < \alpha < \frac{\pi}{2})$ をなす平面で切断したときにできる小さい方の立体を考える。ただし、円柱の高さは ...

積分体積面積円柱三角関数
2025/7/3

放物線 $y = -2x^2 + 4x$ 上の、指定された $x$ 座標を持つ点における接線の傾きを求める問題です。 (1) $x = 2$ の点 (2) $x = -2$ の点

微分接線導関数放物線
2025/7/3

放物線 $y = -2x^2 + 4x$ 上の、指定された $x$ 座標における接線の傾きを求める問題です。 (1) $x=2$ の点における接線の傾き (2) $x=-2$ の点における接線の傾き

微分導関数接線放物線
2025/7/3

関数 $f(x) = \int_1^x (t^2 - 3t + 2) dt$ が与えられている。$f(x)$ が極大値をとる $x$ の値と、その極大値を求めよ。

積分微分極値関数の増減
2025/7/3