$x = \frac{\sqrt{7}+\sqrt{3}}{2}$, $y = \frac{\sqrt{7}-\sqrt{3}}{2}$ のとき、$x^2 - 3xy + y^2$ の値を求める問題です。代数学式の計算平方根展開代入2025/7/31. 問題の内容x=7+32x = \frac{\sqrt{7}+\sqrt{3}}{2}x=27+3, y=7−32y = \frac{\sqrt{7}-\sqrt{3}}{2}y=27−3 のとき、x2−3xy+y2x^2 - 3xy + y^2x2−3xy+y2 の値を求める問題です。2. 解き方の手順まず、x2x^2x2, y2y^2y2, xyxyxy をそれぞれ計算します。x2=(7+32)2=(7)2+273+(3)24=7+221+34=10+2214=5+212x^2 = (\frac{\sqrt{7}+\sqrt{3}}{2})^2 = \frac{(\sqrt{7})^2 + 2\sqrt{7}\sqrt{3} + (\sqrt{3})^2}{4} = \frac{7 + 2\sqrt{21} + 3}{4} = \frac{10 + 2\sqrt{21}}{4} = \frac{5 + \sqrt{21}}{2}x2=(27+3)2=4(7)2+273+(3)2=47+221+3=410+221=25+21y2=(7−32)2=(7)2−273+(3)24=7−221+34=10−2214=5−212y^2 = (\frac{\sqrt{7}-\sqrt{3}}{2})^2 = \frac{(\sqrt{7})^2 - 2\sqrt{7}\sqrt{3} + (\sqrt{3})^2}{4} = \frac{7 - 2\sqrt{21} + 3}{4} = \frac{10 - 2\sqrt{21}}{4} = \frac{5 - \sqrt{21}}{2}y2=(27−3)2=4(7)2−273+(3)2=47−221+3=410−221=25−21xy=(7+32)(7−32)=(7)2−(3)24=7−34=44=1xy = (\frac{\sqrt{7}+\sqrt{3}}{2})(\frac{\sqrt{7}-\sqrt{3}}{2}) = \frac{(\sqrt{7})^2 - (\sqrt{3})^2}{4} = \frac{7 - 3}{4} = \frac{4}{4} = 1xy=(27+3)(27−3)=4(7)2−(3)2=47−3=44=1次に、x2−3xy+y2x^2 - 3xy + y^2x2−3xy+y2 を計算します。x2−3xy+y2=5+212−3(1)+5−212=5+21+5−212−3=102−3=5−3=2x^2 - 3xy + y^2 = \frac{5 + \sqrt{21}}{2} - 3(1) + \frac{5 - \sqrt{21}}{2} = \frac{5 + \sqrt{21} + 5 - \sqrt{21}}{2} - 3 = \frac{10}{2} - 3 = 5 - 3 = 2x2−3xy+y2=25+21−3(1)+25−21=25+21+5−21−3=210−3=5−3=23. 最終的な答えx2−3xy+y2=2x^2 - 3xy + y^2 = 2x2−3xy+y2=2