$(\square + \bigcirc) \div \frac{3}{2}xy = -6x + 12$ の式で、$\square$、$\bigcirc$ にあてはまる式を答える問題です。

代数学代数式方程式式の展開
2025/7/3

1. 問題の内容

(+)÷32xy=6x+12(\square + \bigcirc) \div \frac{3}{2}xy = -6x + 12 の式で、\square\bigcirc にあてはまる式を答える問題です。

2. 解き方の手順

まず、式の両辺に 32xy\frac{3}{2}xy をかけます。
+=(6x+12)×32xy\square + \bigcirc = (-6x + 12) \times \frac{3}{2}xy
右辺を展開します。
+=6x×32xy+12×32xy\square + \bigcirc = -6x \times \frac{3}{2}xy + 12 \times \frac{3}{2}xy
+=9x2y+18xy\square + \bigcirc = -9x^2y + 18xy
\square\bigcirc に当てはまる式は複数考えられますが、ここでは最も単純な例を考えます。例えば、=9x2y\square = -9x^2y=18xy\bigcirc = 18xy とすれば、式は成り立ちます。

3. 最終的な答え

=9x2y\square = -9x^2y
=18xy\bigcirc = 18xy

「代数学」の関連問題

画像に示された2つの関数それぞれの定義域における$y$の値域を求める問題です。 (3) $y = -x + 4$ ($-2 \le x < 2$) (4) $y = \frac{1}{2}x - 1$...

関数の値域一次関数定義域
2025/7/4

以下の連立不等式を解く問題です。 $\begin{cases} 7x-1 \ge 4x-10 \\ 3x+3 > -x-1 \end{cases}$

連立不等式不等式一次不等式代数
2025/7/4

次の2つの1次不等式を解きます。 (1) $\frac{1}{6}x - \frac{1}{2} \leq \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 >...

一次不等式不等式計算
2025/7/4

与えられた不等式を解く問題です。問題は2つあります。 (1) $\frac{3}{5}x - 4 \ge \frac{7}{10}x - 5$ (2) $4x + 1.4 < 2.4x - 1.8$

不等式一次不等式計算
2025/7/4

定数 $p$ に対して定まる2次関数 $f(x) = x^2 - 4px + p$ について、以下の問いに答える。 (1) $f(x)$ の最小値を $m$ とするとき、$m$ を $p$ の式で表す...

二次関数平方完成最大値最小値
2025/7/4

不等式 $|3-4x| \geq 5$ を解く。

不等式絶対値一次不等式
2025/7/4

初項から第7項までの和が3、初項から第14項までの和が18である等比数列がある。この等比数列の公比を$r$とするとき、$r^7$の値、初項から第21項までの和、および第22項から第28項までの和を求め...

等比数列数列の和等比数列の和
2025/7/4

初項から第7項までの和が3、初項から第14項までの和が18である等比数列がある。この等比数列の公比を $r$ とするとき、$r^7$ の値、初項から第21項までの和、および第22項から第28項までの和...

等比数列数列の和公比等比級数
2025/7/4

(1) 絶対値の方程式 $|x|=4$ を解く。 (2) 絶対値の不等式 $|x|<4$ を解く。

絶対値方程式不等式
2025/7/4

(1) $a, b$ が有理数、$u$ が無理数で、$a + bu = 0$ であるならば、$a = 0$ かつ $b = 0$ であることを証明する。 (2) 次の等式を満たす有理数 $p, q$ ...

無理数有理数証明方程式
2025/7/4