次の和 $S$ を求める問題です。 $S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + 4 \cdot 3^3 + \dots + n \cdot 3^{n-1}$代数学級数等比数列和の公式2025/7/31. 問題の内容次の和 SSS を求める問題です。S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + 4 \cdot 3^3 + \dots + n \cdot 3^{n-1}S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−12. 解き方の手順まず、SSS を書きます。S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + 4 \cdot 3^3 + \dots + n \cdot 3^{n-1}S=1⋅1+2⋅3+3⋅32+4⋅33+⋯+n⋅3n−1次に、3S3S3S を計算します。3S=1⋅3+2⋅32+3⋅33+⋯+(n−1)⋅3n−1+n⋅3n3S = 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + (n-1) \cdot 3^{n-1} + n \cdot 3^n3S=1⋅3+2⋅32+3⋅33+⋯+(n−1)⋅3n−1+n⋅3nSSS から 3S3S3S を引くと、S−3S=1⋅1+(2−1)⋅3+(3−2)⋅32+(4−3)⋅33+⋯+(n−(n−1))⋅3n−1−n⋅3nS - 3S = 1 \cdot 1 + (2-1) \cdot 3 + (3-2) \cdot 3^2 + (4-3) \cdot 3^3 + \dots + (n-(n-1)) \cdot 3^{n-1} - n \cdot 3^nS−3S=1⋅1+(2−1)⋅3+(3−2)⋅32+(4−3)⋅33+⋯+(n−(n−1))⋅3n−1−n⋅3n−2S=1+3+32+33+⋯+3n−1−n⋅3n-2S = 1 + 3 + 3^2 + 3^3 + \dots + 3^{n-1} - n \cdot 3^n−2S=1+3+32+33+⋯+3n−1−n⋅3n等比数列の和の公式より、1+3+32+⋯+3n−1=3n−13−1=3n−121 + 3 + 3^2 + \dots + 3^{n-1} = \frac{3^n - 1}{3 - 1} = \frac{3^n - 1}{2}1+3+32+⋯+3n−1=3−13n−1=23n−1したがって、−2S=3n−12−n⋅3n-2S = \frac{3^n - 1}{2} - n \cdot 3^n−2S=23n−1−n⋅3n−2S=3n−1−2n⋅3n2-2S = \frac{3^n - 1 - 2n \cdot 3^n}{2}−2S=23n−1−2n⋅3n−2S=(1−2n)⋅3n−12-2S = \frac{(1 - 2n) \cdot 3^n - 1}{2}−2S=2(1−2n)⋅3n−1S=1−(1−2n)⋅3n4S = \frac{1 - (1 - 2n) \cdot 3^n}{4}S=41−(1−2n)⋅3nS=1+(2n−1)⋅3n4S = \frac{1 + (2n - 1) \cdot 3^n}{4}S=41+(2n−1)⋅3n3. 最終的な答えS=1+(2n−1)⋅3n4S = \frac{1 + (2n - 1) \cdot 3^n}{4}S=41+(2n−1)⋅3n