袋の中に赤玉が3個、白玉が5個入っている。袋から1個ずつ、合計4個の玉を取り出す。ただし、取り出した玉は元に戻さない。3個目以降に初めて赤玉を取り出す確率を求めよ。

確率論・統計学確率期待値場合の数確率の計算
2025/7/3

1. 問題の内容

袋の中に赤玉が3個、白玉が5個入っている。袋から1個ずつ、合計4個の玉を取り出す。ただし、取り出した玉は元に戻さない。3個目以降に初めて赤玉を取り出す確率を求めよ。

2. 解き方の手順

3個目以降に初めて赤玉を取り出すということは、以下のいずれかのケースになる。
* 3個目に初めて赤玉が出る
* 4個目に初めて赤玉が出る
それぞれのケースの確率を計算し、それらを足し合わせる。
* 3個目に初めて赤玉が出る場合:1個目、2個目は白玉であり、3個目は赤玉である必要がある。
* 1個目に白玉を取り出す確率は 58\frac{5}{8}
* 2個目に白玉を取り出す確率は 47\frac{4}{7}
* 3個目に赤玉を取り出す確率は 36=12\frac{3}{6} = \frac{1}{2}
* したがって、3個目に初めて赤玉が出る確率は
\frac{5}{8} \times \frac{4}{7} \times \frac{1}{2} = \frac{20}{112} = \frac{5}{28}
* 4個目に初めて赤玉が出る場合:1個目、2個目、3個目は白玉であり、4個目は赤玉である必要がある。
* 1個目に白玉を取り出す確率は 58\frac{5}{8}
* 2個目に白玉を取り出す確率は 47\frac{4}{7}
* 3個目に白玉を取り出す確率は 36=12\frac{3}{6} = \frac{1}{2}
* 4個目に赤玉を取り出す確率は 35\frac{3}{5}
* したがって、4個目に初めて赤玉が出る確率は
\frac{5}{8} \times \frac{4}{7} \times \frac{1}{2} \times \frac{3}{5} = \frac{60}{560} = \frac{3}{28}
求める確率は、これらの確率を足し合わせたものになる。
\frac{5}{28} + \frac{3}{28} = \frac{8}{28} = \frac{2}{7}

3. 最終的な答え

27\frac{2}{7}

「確率論・統計学」の関連問題

ある居酒屋の売り上げデータから、母平均 $\mu$ を区間推定する問題です。具体的には、以下の手順で求めます。 (1) 標本平均を求める。 (2) 標本分散を求める。 (3) 標本標準偏差を求める。 ...

区間推定母平均標本平均標本分散標本標準偏差t分布信頼区間
2025/7/4

ある居酒屋の店主が売り上げの予測を立てたいと考えている。店主は売り上げを正規母集団から観測されるデータとみなし、その母平均$\mu$を代表的な売り上げとして推定しようとしている。伝票の中からランダムに...

標本平均標本分散統計的推定正規母集団
2025/7/4

ある種の蝶の体長を6個体測定した結果、76, 85, 82, 83, 76, 78ミリメートルであった。この標本から母平均$\mu$を区間推定する問題である。具体的には、標本平均、標本分散、標本標準偏...

区間推定標本平均標本分散標本標準偏差t分布信頼区間
2025/7/4

問題は、自由度のあるt分布に従う統計量$T$を用いて、$-t_{\alpha/2} \leq T \leq t_{\alpha/2}$を満たす$\mu$について、$T$に(4)の結果を代入して得られる...

統計的推測信頼区間t分布母平均
2025/7/4

ある居酒屋の売り上げデータ(8枚の伝票からランダムに抽出されたもの: 45, 39, 42, 57, 28, 33, 40, 52 (単位は万円))を用いて、母平均 $\mu$ の95%信頼区間を区間...

区間推定信頼区間t分布標本平均標本分散標本標準偏差
2025/7/4

ある居酒屋の売り上げデータから、8枚の伝票をランダムに抜き出したところ、45, 39, 42, 57, 28, 33, 40, 52 (単位:万円)という数字が得られた。このデータを用いて、母平均 $...

標本平均標本分散区間推定統計
2025/7/4

与えられた8つの売り上げデータ(45, 39, 42, 57, 28, 33, 40, 52、単位は万円)から標本平均を計算する問題です。

標本平均統計データ分析
2025/7/4

居酒屋の売り上げデータから、母平均$\mu$を区間推定する問題です。具体的には、以下の手順で解きます。 (1) 標本平均$\bar{x}$を求める。 (2) 標本分散$s^2$を求める。 (3) 標本...

区間推定母平均信頼区間t分布標本平均標本分散標本標準偏差
2025/7/4

P地点から出発し、以下の規則に従ってA, B, Cいずれかの地点に到達する確率を求める問題です。 - 規則1:南に進んでいる時、分岐点でサイコロを振る。4以下が出たら東西に曲がり、5以上が出たら直進す...

確率期待値2次関数
2025/7/4

問題は以下の通りです。 (1) 図のような道路において、P地点から南に向かって出発し、与えられた規則に従って進むとき、A地点、B地点に到達する確率を求めよ。また、A地点、B地点、C地点に到達した場合に...

確率期待値二次関数代数学二次方程式グラフ面積
2025/7/4