与えられた式 $(4y-5)-(7y-3)$ を計算し、選択肢の中から正しい答えを選ぶ問題です。

代数学式の計算多項式一次式
2025/3/31

1. 問題の内容

与えられた式 (4y5)(7y3)(4y-5)-(7y-3) を計算し、選択肢の中から正しい答えを選ぶ問題です。

2. 解き方の手順

まず、括弧を外します。
(4y5)(7y3)=4y57y+3(4y-5)-(7y-3) = 4y - 5 - 7y + 3
次に、同類項をまとめます。
4y7y5+3=(47)y+(5+3)4y - 7y - 5 + 3 = (4-7)y + (-5+3)
計算すると、
3y2-3y - 2

3. 最終的な答え

3y2-3y - 2

「代数学」の関連問題

与えられた式を単純化する問題です。 式は $2xy - 3x + 2y - 3$ です。

因数分解式の単純化多項式
2025/6/13

与えられた不等式 $7x + 2 \geq 5x - 6$ を解き、$x$ の範囲を求めます。

不等式一次不等式解の範囲
2025/6/13

与えられた行列を階段行列に変形します。 (1) $\begin{pmatrix} -1 & 1 & -2 \\ 3 & -2 & 1 \\ -2 & 3 & -9 \end{pmatrix}$ (2)...

線形代数行列階段行列行基本変形
2025/6/13

与えられた不等式 $3x - 7 < 5$ を解き、$x$ の範囲を求める。

不等式一次不等式解法
2025/6/13

与えられた2つの式を因数分解する問題です。 (4) $2x^2 - xy - y^2 - 7x + y + 6$ (5) $a^2(b-c) + b^2(c-a) + c^2(a-b)$

因数分解多項式
2025/6/13

不等式 $-\frac{x}{5} \leq 3$ を解く問題です。両辺に-5を掛ける際に不等号の向きが変わることに注意が必要です。

不等式一次不等式解の範囲
2025/6/13

不等式 $3x \geq 12$ を解く問題です。不等式の両辺を同じ数で割って、$x$ の範囲を求めます。

不等式一次不等式解法
2025/6/13

## 問題の内容

二次関数放物線直線交点判別式解と係数の関係軌跡
2025/6/13

2次不等式 $-x^2+3x+10<0$ を解く問題です。

二次不等式因数分解不等式
2025/6/13

与えられた不等式 $-x^2 + 3x + 10 < 0$ を解く問題です。最初に両辺に $-1$ をかけて、$x^2 - 3x - 10 > 0$ という不等式に変形し、この不等式を解きます。

不等式二次不等式因数分解
2025/6/13