与えられた13個の関数をそれぞれ微分する問題です。解析学微分三角関数指数関数対数関数合成関数2025/7/41. 問題の内容与えられた13個の関数をそれぞれ微分する問題です。2. 解き方の手順各関数の微分を順番に求めます。(1) y=2x−cosxy = 2x - \cos xy=2x−cosxy′=2−(−sinx)=2+sinxy' = 2 - (-\sin x) = 2 + \sin xy′=2−(−sinx)=2+sinx(2) y=sinx−tanxy = \sin x - \tan xy=sinx−tanxy′=cosx−1cos2x=cosx−sec2xy' = \cos x - \frac{1}{\cos^2 x} = \cos x - \sec^2 xy′=cosx−cos2x1=cosx−sec2x(3) y=cos(2x−1)y = \cos(2x-1)y=cos(2x−1)y′=−sin(2x−1)⋅2=−2sin(2x−1)y' = -\sin(2x-1) \cdot 2 = -2\sin(2x-1)y′=−sin(2x−1)⋅2=−2sin(2x−1)(4) y=tan3xy = \tan 3xy=tan3xy′=1cos2(3x)⋅3=3sec2(3x)y' = \frac{1}{\cos^2 (3x)} \cdot 3 = 3\sec^2(3x)y′=cos2(3x)1⋅3=3sec2(3x)(5) y=cos3xy = \cos^3 xy=cos3xy′=3cos2x⋅(−sinx)=−3cos2xsinxy' = 3\cos^2 x \cdot (-\sin x) = -3\cos^2 x \sin xy′=3cos2x⋅(−sinx)=−3cos2xsinx(6) y=1cosx=secxy = \frac{1}{\cos x} = \sec xy=cosx1=secxy′=−(−sinx)cos2x=sinxcos2x=sinxcosx⋅1cosx=tanxsecxy' = \frac{-(-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} = \tan x \sec xy′=cos2x−(−sinx)=cos2xsinx=cosxsinx⋅cosx1=tanxsecx(7) y=sin3xcos5xy = \sin 3x \cos 5xy=sin3xcos5xy′=(cos3x)⋅3⋅cos5x+sin3x⋅(−sin5x)⋅5=3cos3xcos5x−5sin3xsin5xy' = (\cos 3x) \cdot 3 \cdot \cos 5x + \sin 3x \cdot (-\sin 5x) \cdot 5 = 3\cos 3x \cos 5x - 5\sin 3x \sin 5xy′=(cos3x)⋅3⋅cos5x+sin3x⋅(−sin5x)⋅5=3cos3xcos5x−5sin3xsin5x(8) y=log∣2x−12x+1∣=log∣2x−1∣−log∣2x+1∣y = \log \left| \frac{2x-1}{2x+1} \right| = \log |2x-1| - \log |2x+1|y=log2x+12x−1=log∣2x−1∣−log∣2x+1∣y′=22x−1−22x+1=2(2x+1)−2(2x−1)(2x−1)(2x+1)=4x+2−4x+24x2−1=44x2−1y' = \frac{2}{2x-1} - \frac{2}{2x+1} = \frac{2(2x+1)-2(2x-1)}{(2x-1)(2x+1)} = \frac{4x+2-4x+2}{4x^2-1} = \frac{4}{4x^2-1}y′=2x−12−2x+12=(2x−1)(2x+1)2(2x+1)−2(2x−1)=4x2−14x+2−4x+2=4x2−14(9) y=e4xy = e^{4x}y=e4xy′=e4x⋅4=4e4xy' = e^{4x} \cdot 4 = 4e^{4x}y′=e4x⋅4=4e4x(10) y=(x+3)e−xy = (x+3)e^{-x}y=(x+3)e−xy′=(1)e−x+(x+3)(−e−x)=e−x−xe−x−3e−x=−xe−x−2e−x=−(x+2)e−xy' = (1)e^{-x} + (x+3)(-e^{-x}) = e^{-x} - xe^{-x} - 3e^{-x} = -xe^{-x} - 2e^{-x} = -(x+2)e^{-x}y′=(1)e−x+(x+3)(−e−x)=e−x−xe−x−3e−x=−xe−x−2e−x=−(x+2)e−x(11) y=excosxy = e^x \cos xy=excosxy′=excosx+ex(−sinx)=ex(cosx−sinx)y' = e^x \cos x + e^x (-\sin x) = e^x (\cos x - \sin x)y′=excosx+ex(−sinx)=ex(cosx−sinx)(12) y=log(2x)y = \log(2x)y=log(2x)y′=12x⋅2=1xy' = \frac{1}{2x} \cdot 2 = \frac{1}{x}y′=2x1⋅2=x1(13) y=34xy = 3^{4x}y=34xy′=34x⋅log3⋅4=4log3⋅34xy' = 3^{4x} \cdot \log 3 \cdot 4 = 4\log 3 \cdot 3^{4x}y′=34x⋅log3⋅4=4log3⋅34x3. 最終的な答え(1) y′=2+sinxy' = 2 + \sin xy′=2+sinx(2) y′=cosx−sec2xy' = \cos x - \sec^2 xy′=cosx−sec2x(3) y′=−2sin(2x−1)y' = -2\sin(2x-1)y′=−2sin(2x−1)(4) y′=3sec2(3x)y' = 3\sec^2(3x)y′=3sec2(3x)(5) y′=−3cos2xsinxy' = -3\cos^2 x \sin xy′=−3cos2xsinx(6) y′=tanxsecxy' = \tan x \sec xy′=tanxsecx(7) y′=3cos3xcos5x−5sin3xsin5xy' = 3\cos 3x \cos 5x - 5\sin 3x \sin 5xy′=3cos3xcos5x−5sin3xsin5x(8) y′=44x2−1y' = \frac{4}{4x^2-1}y′=4x2−14(9) y′=4e4xy' = 4e^{4x}y′=4e4x(10) y′=−(x+2)e−xy' = -(x+2)e^{-x}y′=−(x+2)e−x(11) y′=ex(cosx−sinx)y' = e^x (\cos x - \sin x)y′=ex(cosx−sinx)(12) y′=1xy' = \frac{1}{x}y′=x1(13) y′=4log3⋅34xy' = 4\log 3 \cdot 3^{4x}y′=4log3⋅34x